Automated Vehicles and next generation Advanced Driver Assistance Systems hold the promise of disrupting mobility. However, public field trials have recently highlighted road anomalies, such as potholes and bumps, as a source of autopilot disengagements. In this dissertation, we research the influence of road irregularities on the performance of Artificial Intelligence-based vision systems. To this end, we conducted controlled real-world experiments and developed a validated vehicle system computational model using IPG Carmaker. The vehicle detection, tracking and distance estimation performance have been investigated by undertaking a thorough sensitivity analysis. The results indicate the system limitations in performing adequately for a range of bump sizes and vehicle speeds. With our findings we put emphasis on the importance of vehicle dynamics in the development of automated driving systems.
Date of Award | Jan 2020 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Sponsors | European Union Horizon 2020 |
---|
Supervisor | Stratis Kanarachos (Supervisor) |
---|
Performance validation of artificial intelligence-based vehicle vision systems and the role of vehicle vertical dynamics
Weber, Y. (Author). Jan 2020
Student thesis: Master's Thesis › Master of Science by Research