Violation of Lee-Yang circle theorem for Ising phase transitions on complex networks

K. Krasnytska, B. Berche, Y. Holovatch, Ralph Kenna

Research output: Contribution to journalArticle

17 Citations (Scopus)
16 Downloads (Pure)


The Ising model on annealed complex networks with degree distribution decaying algebraically as $p(K)\sim K^{-\lambda}$ has a second-order phase transition at finite temperature if $\lambda>3$ . In the absence of space dimensionality, λ controls the transition strength; classical mean-field exponents apply for $\lambda >5$ but critical exponents are λ-dependent if $\lambda <5$ . Here we show that, as for regular lattices, the celebrated Lee-Yang circle theorem is obeyed for the former case. However, unlike on regular lattices where it is independent of dimensionality, the circle theorem fails on complex networks when $\lambda <5$ . We discuss the importance of this result for both theory and experiments on phase transitions and critical phenomena. We also investigate the finite-size scaling of Lee-Yang zeros in both regimes as well as the multiplicative logarithmic corrections which occur at $\lambda=5$ .
Original languageEnglish
Issue number6
Publication statusPublished - 7 Oct 2015

Fingerprint Dive into the research topics of 'Violation of Lee-Yang circle theorem for Ising phase transitions on complex networks'. Together they form a unique fingerprint.

Cite this