Abstract
This empirical study examines the extent of non-linearity in a multivariate model of monthly financial series. To capture the conditional heteroscedasticity in the series, both the GARCH(1,1) and GARCH(1,1)-in-mean models are employed. The conditional errors are assumed to follow the normal and Student-t distributions. The non-linearity in the residuals of a standard OLS regression are also assessed. It is found that the OLS residuals as well as conditional errors of the GARCH models exhibit strong non-linearity. Under the Student density, the extent of non-linearity in the GARCH conditional errors was generally similar to those of the standard OLS. The GARCH-in-mean regression generated the worse out-of-sample forecasts.
Original language | English |
---|---|
Pages (from-to) | 791-801 |
Number of pages | 11 |
Journal | Applied Economics |
Volume | 35 |
Issue number | 7 |
DOIs | |
Publication status | Published - 10 May 2003 |
Externally published | Yes |