Using a wireless visual sensor network to harmonically navigate multiple low-cost wheelchairs in an indoor environment

Feng Tian, Kuo-Ming Chao, Zuren Feng, Keyi Xing, Nazaraf Shah

Research output: Contribution to journalArticle

3 Citations (Scopus)
27 Downloads (Pure)

Abstract

Harmonic navigation of multiple low-cost robotic wheelchairs in a topology of wireless sensor nodes that are deployed in a dynamic and crowded indoor environment is a Non-deterministic Polynomial-time hard (NP-hard) problem. To address this problem, we propose a distributed multi-wheelchair global harmonic navigation algorithm. The distinguishing features of the proposed navigation algorithm are global search and local conflict resolution abilities. In the proposed algorithm, a travel time prediction method adopts a penalty for potential conflicts based on wheelchairs׳ priority, velocity and distance between the nodes. Moreover, three harmonic rules are proposed for: (1) giving the highest priority to humans, (2) giving the highest priority to wheelchairs, (3) giving flexible priority to wheelchairs. Through extensive quantitative simulations, we explore the performance of wheelchairs in various floor plan topologies and different values for the system parameters, and demonstrate that the properties of crowded indoor environments have important influence on the performance of global navigation, such as service time. The third harmonic rule establishes the trade-off between the performance of humans and robotic wheelchairs. At the same time, physical prototype wheelchairs are implemented and they verify the proposed global harmonic navigation algorithm. Some suggestions for robotic wheelchair designers, building architects and building owners are provided based on the conclusion of the experimental results.
Original languageEnglish
Pages (from-to)88-99
JournalJournal of Network and Computer Applications
Volume62
Early online date23 Dec 2015
DOIs
Publication statusPublished - Feb 2016

Fingerprint

Wheelchairs
Sensor networks
Navigation
Costs
Robotics
Topology
Travel time
Sensor nodes
Polynomials

Bibliographical note

NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Network and Computer Applications. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Network and Computer Applications, [VOL 62, (2015)] DOI: 10.1016/j.jnca.2015.11.018

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

  • Harmonic navigation
  • Low-cost wheelchair
  • Multiple wheelchair navigation
  • Wireless visual sensor network
  • Indoor environment

Cite this

@article{24576b1b597a446ba429d88a0549efae,
title = "Using a wireless visual sensor network to harmonically navigate multiple low-cost wheelchairs in an indoor environment",
abstract = "Harmonic navigation of multiple low-cost robotic wheelchairs in a topology of wireless sensor nodes that are deployed in a dynamic and crowded indoor environment is a Non-deterministic Polynomial-time hard (NP-hard) problem. To address this problem, we propose a distributed multi-wheelchair global harmonic navigation algorithm. The distinguishing features of the proposed navigation algorithm are global search and local conflict resolution abilities. In the proposed algorithm, a travel time prediction method adopts a penalty for potential conflicts based on wheelchairs׳ priority, velocity and distance between the nodes. Moreover, three harmonic rules are proposed for: (1) giving the highest priority to humans, (2) giving the highest priority to wheelchairs, (3) giving flexible priority to wheelchairs. Through extensive quantitative simulations, we explore the performance of wheelchairs in various floor plan topologies and different values for the system parameters, and demonstrate that the properties of crowded indoor environments have important influence on the performance of global navigation, such as service time. The third harmonic rule establishes the trade-off between the performance of humans and robotic wheelchairs. At the same time, physical prototype wheelchairs are implemented and they verify the proposed global harmonic navigation algorithm. Some suggestions for robotic wheelchair designers, building architects and building owners are provided based on the conclusion of the experimental results.",
keywords = "Harmonic navigation, Low-cost wheelchair, Multiple wheelchair navigation, Wireless visual sensor network, Indoor environment",
author = "Feng Tian and Kuo-Ming Chao and Zuren Feng and Keyi Xing and Nazaraf Shah",
note = "NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Network and Computer Applications. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Network and Computer Applications, [VOL 62, (2015)] DOI: 10.1016/j.jnca.2015.11.018 {\circledC} 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/",
year = "2016",
month = "2",
doi = "10.1016/j.jnca.2015.11.018",
language = "English",
volume = "62",
pages = "88--99",
journal = "Journal of Network and Computer Applications",
issn = "1084-8045",
publisher = "Elsevier",

}

TY - JOUR

T1 - Using a wireless visual sensor network to harmonically navigate multiple low-cost wheelchairs in an indoor environment

AU - Tian, Feng

AU - Chao, Kuo-Ming

AU - Feng, Zuren

AU - Xing, Keyi

AU - Shah, Nazaraf

N1 - NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Network and Computer Applications. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Network and Computer Applications, [VOL 62, (2015)] DOI: 10.1016/j.jnca.2015.11.018 © 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

PY - 2016/2

Y1 - 2016/2

N2 - Harmonic navigation of multiple low-cost robotic wheelchairs in a topology of wireless sensor nodes that are deployed in a dynamic and crowded indoor environment is a Non-deterministic Polynomial-time hard (NP-hard) problem. To address this problem, we propose a distributed multi-wheelchair global harmonic navigation algorithm. The distinguishing features of the proposed navigation algorithm are global search and local conflict resolution abilities. In the proposed algorithm, a travel time prediction method adopts a penalty for potential conflicts based on wheelchairs׳ priority, velocity and distance between the nodes. Moreover, three harmonic rules are proposed for: (1) giving the highest priority to humans, (2) giving the highest priority to wheelchairs, (3) giving flexible priority to wheelchairs. Through extensive quantitative simulations, we explore the performance of wheelchairs in various floor plan topologies and different values for the system parameters, and demonstrate that the properties of crowded indoor environments have important influence on the performance of global navigation, such as service time. The third harmonic rule establishes the trade-off between the performance of humans and robotic wheelchairs. At the same time, physical prototype wheelchairs are implemented and they verify the proposed global harmonic navigation algorithm. Some suggestions for robotic wheelchair designers, building architects and building owners are provided based on the conclusion of the experimental results.

AB - Harmonic navigation of multiple low-cost robotic wheelchairs in a topology of wireless sensor nodes that are deployed in a dynamic and crowded indoor environment is a Non-deterministic Polynomial-time hard (NP-hard) problem. To address this problem, we propose a distributed multi-wheelchair global harmonic navigation algorithm. The distinguishing features of the proposed navigation algorithm are global search and local conflict resolution abilities. In the proposed algorithm, a travel time prediction method adopts a penalty for potential conflicts based on wheelchairs׳ priority, velocity and distance between the nodes. Moreover, three harmonic rules are proposed for: (1) giving the highest priority to humans, (2) giving the highest priority to wheelchairs, (3) giving flexible priority to wheelchairs. Through extensive quantitative simulations, we explore the performance of wheelchairs in various floor plan topologies and different values for the system parameters, and demonstrate that the properties of crowded indoor environments have important influence on the performance of global navigation, such as service time. The third harmonic rule establishes the trade-off between the performance of humans and robotic wheelchairs. At the same time, physical prototype wheelchairs are implemented and they verify the proposed global harmonic navigation algorithm. Some suggestions for robotic wheelchair designers, building architects and building owners are provided based on the conclusion of the experimental results.

KW - Harmonic navigation

KW - Low-cost wheelchair

KW - Multiple wheelchair navigation

KW - Wireless visual sensor network

KW - Indoor environment

U2 - 10.1016/j.jnca.2015.11.018

DO - 10.1016/j.jnca.2015.11.018

M3 - Article

VL - 62

SP - 88

EP - 99

JO - Journal of Network and Computer Applications

JF - Journal of Network and Computer Applications

SN - 1084-8045

ER -