Abstract
We study the question of universality in the two-dimensional spin-1 Baxter-Wu model in the presence of a crystal field Δ. We employ extensive numerical simulations of two types, providing us with complementary results: Wang-Landau sampling at fixed values of Δ and a parallelized variant of the multicanonical approach performed at constant temperature T. A detailed finite-size scaling analysis in the regime of second-order phase transitions in the (Δ,T) phase diagram indicates that the transition belongs to the universality class of the four-state Potts model. Previous controversies with respect to the nature of the transition are discussed and attributed to the presence of strong finite-size effects, especially as one approaches the pentacritical point of the model.
Original language | English |
---|---|
Article number | 054143 |
Pages (from-to) | (In-Press) |
Number of pages | 10 |
Journal | Physical Review E |
Volume | 105 |
Issue number | 5 |
Early online date | 25 May 2022 |
DOIs | |
Publication status | Published - May 2022 |
Bibliographical note
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics