Abstract
Population health monitoring is a fundamental component of the public health system. Due to the high-cost nature of traditional population-wise health-data collection methods, a class of sparse-sampling-completion algorithms are proposed to exploit the spatio-temporal correlation buried under the observed examples. However, for the population health data, a huge challenge for the state-of-the-art completion methods is the unstationary environment. Specifically, the underlying temporal correlation of the population health data are evolving from year to year. To this end, we propose a GAN-based year-by-year completion framework: uncertainty-aware augmented generative adversarial imputation nets (UAA-GAIN) , to address the problem of unstationary environment. To further restrain the error accumulation, we develop a stronger generator as well as a stronger discriminator in the min-max equilibrium. A by-product of the augmented GAIN model allows weighting the difficulty of examples. Inspired by the idea of curriculum learning, a better training schedule is implemented in the proposed framework. We evaluate the proposed method on three real-world chronic disease datasets and the results show that UAA-GAIN outperforms other baseline methods in various settings.
Original language | English |
---|---|
Article number | 8 |
Pages (from-to) | 1-18 |
Number of pages | 18 |
Journal | ACM Transactions on Computing for Healthcare |
Volume | 4 |
Issue number | 1 |
Early online date | 11 Nov 2022 |
DOIs | |
Publication status | Published - 30 Mar 2023 |