Abstract
The efficacy of a learning process is influenced by the quality of teaching, learning support and environment.
This requires effort in tracking how students learn. This paper explores the use serious games in order to help understand
the learning process, where interaction data during a play-learn session can be captured. The focus is on the use of ingame
data, analyzed using Learning Analytics techniques, and discusses the potential of such an approach to predict
learners’ performance. Gameplay data were collected from various play-learn sessions based on a First Aid Game. Results
indicate that in-game measures can help to understand students’ progress and predict their performance, providing
opportunities for individual support to be provided to learners.
Original language | English |
---|---|
Publication status | Published - 20 Apr 2015 |
Event | American Educational Research Association annual meeting - Chicago, Illinois, Chicago, Illinois, United States Duration: 16 Apr 2015 → 20 Apr 2015 |
Conference
Conference | American Educational Research Association annual meeting |
---|---|
Country/Territory | United States |
City | Chicago, Illinois |
Period | 16/04/15 → 20/04/15 |
Bibliographical note
This paper was presented on the 20th April 2015 at the AERA (American Educational Research Association) conference, Chicago, Illinois.Arnab, S. , Imiruaye, O. , Liarokapis, F. , Tombs, G. , Lameras, P. , Serrano-Laguna, Angel and Moreno-Ger, Pablo. 2015, 20 April. Toward Performance Prediction Using In-Game Measures. Paper presented at
the 2015 annual meeting of the American Educational Research
Association. Retrieved 18 August 2015, from the AERA Online Paper
Repository.
Keywords
- serious games
- performance prediction
- user studies
- learning analytics
- game-based learning