Abstract
MgO/CeO2 glass ceramic is a key solid catalyst and accelerant produced by raw mixing, prilling and pressure sintering. Grinding, as a high–efficiency machining method was used to obtain MgO/CeO2 glass ceramic components with accurate size to meet the size requirements of design. However, thermal damage occurring on the ground surface may change the properties of the components and affect their performance in subsequent applications. In this work, a grinding thermal model was established and validated by experiments. On the basis of this thermal model, the grinding temperature can be controlled to < 100 oC by selecting optimal grinding parameters and thus prevent grinding burn. The mechanism of potential chemical reactions on the grinding surface was further studied by analysing the transient temperature jump at a grain wear flat area and comparing the change in element mass fraction before and after grinding. The performance of a normal resin–bond diamond wheel and a resin–bond wheel with Ni–P alloy coating on the diamond grains was compared. Results showed that the latter intensified the redox reaction because of the catalytic actions of Ni and P, and the mass fraction of each elements on the workpiece surface shows obvious uneven distribution due to the surface spalling of Ni–P alloy. All these results indicated that key issues are the optimal setup of process parameters to control the grinding–zone temperature and the selection of a proper grinding wheel to avoid catalytic elements such as Ni and P.
Original language | English |
---|---|
Pages (from-to) | 3387-3396 |
Journal | The International Journal of Advanced Manufacturing Technology |
Volume | 105 |
Early online date | 12 Nov 2019 |
DOIs | |
Publication status | Published - Dec 2019 |
Bibliographical note
The final publication is available at Springer via http://dx.doi.org/10.1007/s00170-019-04460-0Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.
Keywords
- chemical reactions
- transient temperature;
- grinding thermal model;
- MgO/CeO2 glass ceramic;
- thermal damage;
Fingerprint
Dive into the research topics of 'Thermal Damage Control for Dry Grinding of MgO/CeO2 Glass Ceramic'. Together they form a unique fingerprint.Profiles
-
Rui Cai
- School of Mechanical Engineering - Assistant Professor in Engineering Analysis
Person: Teaching and Research