Thermal creep and relaxation of prestressing steel

Ya Wei, Li Zhang, Francis T. K. Au, Jing Li, Neil C. M. Tsang

Research output: Contribution to journalArticle

5 Citations (Scopus)
68 Downloads (Pure)

Abstract

The thermal creep and relaxation of prestressing steel are crucial to the permanent loss of prestress in post-tensioned concrete structures after fire. Harmathy’s creep model is widely used to account for the irrecoverable thermal creep strain. In view of advances in steel manufacture, it is desirable todetermine the relevant parameters of Harmathy’s creep model for common prestressing steel being used.Recently, Gales et al. found that the creep parameters obtained by Harmathy and Stanzak in the 1970s were out of date as the use of these parameters could not give accurate numerical results. They further identified the parameters through testing of prestressing steel to ASTM A417. This study further extended the work of Gales et al. Based on the steady state thermal creep and relaxation tests of prestressing steel to GB/T 5224 (Grade 1860) and BS 5896 (Grade 1860) over wide stress ranges, the parameters of Harmathy’s thermal creep model were identified and calibrated. Using the approach of Maljaars et al., the lower limit of tertiary creep was estimated and the creep model was further fine-tuned to incorporate tertiary creep. Numerical studies were conducted to examine the thermal creep and relaxation 19 of prestressing steel at elevated temperatures using the enhanced creep model. The numerical predictions were found to agree well with the test results in respect of thermal creep and relaxation. In particular, predictions using the enhanced creep model with different sets of thermal creep parameters were compared with results of the thermal relaxation test conducted by MacLean, indicating different thermal creep resistance.

Publisher Statement: NOTICE: this is the author’s version of a work that was accepted for publication in Construction and Building Materials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Construction and Building Materials, [128, (2016)] DOI: 10.1016/j.conbuildmat.2016.10.068

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Original languageEnglish
Pages (from-to)118-127
Number of pages10
JournalConstruction and Building Materials
Volume128
Early online date21 Oct 2016
DOIs
Publication statusPublished - 15 Dec 2016

Bibliographical note

NOTICE: this is the author’s version of a work that was accepted for publication in Construction and Building Materials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Construction and Building Materials, [128, (2016)] DOI: 10.1016/j.conbuildmat.2016.10.068

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

  • numerical model
  • prestressing steel
  • thermal creep
  • thermal relaxation

Fingerprint Dive into the research topics of 'Thermal creep and relaxation of prestressing steel'. Together they form a unique fingerprint.

  • Cite this