The origin and mechanisms of salinization of the Lower Jordan River

E. Farber, A. Vengosh, I. Gavrieli, A. Marie, T.D. Bullen, B. Mayer, R. Holtzman, M. Segal, U. Shavit

Research output: Contribution to journalArticle

79 Citations (Scopus)

Abstract

The chemical and isotopic (87Sr/86Sr, δ11B, δ34Ssulfate, δ18Owater, δ15Nnitrate) compositions of water from the Lower Jordan River and its major tributaries between the Sea of Galilee and the Dead Sea were determined in order to reveal the origin of the salinity of the Jordan River. We identified three separate hydrological zones along the flow of the river: (1) A northern section (20 km downstream of its source) where the base flow composed of diverted saline and wastewaters is modified due to discharge of shallow sulfate-rich groundwater, characterized by low 87Sr/86Sr (0.7072), δ34Ssulfate (−2‰), high δ11B (∼36‰), δ15Nnitrate (∼15‰) and high δ18Owater (−2 to–3‰) values. The shallow groundwater is derived from agricultural drainage water mixed with natural saline groundwater and discharges to both the Jordan and Yarmouk rivers. The contribution of the groundwater component in the Jordan River flow, deduced from mixing relationships of solutes and strontium isotopes, varies from 20 to 50% of the total flow. (2) A central zone (20–50 km downstream from its source) where salt variations are minimal and the rise of 87Sr/86Sr and SO4/Cl ratios reflects predominance of eastern surface water flows. (3) A southern section (50–100 km downstream of its source) where the total dissolved solids of the Jordan River increase, particularly during the spring (70–80 km) and summer (80–100 km) to values as high as 11.1 g/L. Variations in the chemical and isotopic compositions of river water along the southern section suggest that the Zarqa River (87Sr/86Sr∼0.70865; δ11B∼25‰) has a negligible affect on the Jordan River. Instead, the river quality is influenced primarily by groundwater discharge composed of sulfate-rich saline groundwater (Cl-=31–180 mM; SO4/Cl∼0.2–0.5; Br/Cl∼2–3×10-3; 87Sr/86Sr∼0.70805; δ11B∼30‰; δ15Nnitrate ∼17‰, δ34Ssulfate=4–10‰), and Ca-chloride Rift valley brines (Cl-=846–1500 mM; Br/Cl∼6–8×10-3; 87Sr/86Sr∼0.7080; δ11B>40‰; δ34Ssulfate=4–10‰). Mixing calculations indicate that the groundwater discharged to the river is composed of varying proportions of brines and sulfate-rich saline groundwater. Solute mass balance calculations point to a ∼10% contribution of saline groundwater (Cl−=282 to 564 mM) to the river. A high nitrate level (up to 2.5 mM) in the groundwater suggests that drainage of wastewater derived irrigation water is an important source for the groundwater. This irrigation water appears to leach Pleistocene sediments of the Jordan Valley resulting in elevated sulfate contents and altered strontium and boron isotopic compositions of the groundwater that in turn impacts the water quality of the lower Jordan River.
Original languageEnglish
Pages (from-to)1989-2006
Number of pages18
JournalGeochimica Et Cosmochimica Acta
Volume68
Issue number9
Early online date15 Apr 2004
DOIs
Publication statusPublished - 1 May 2004
Externally publishedYes

Fingerprint

salinization
groundwater
river
sulfate
solute
isotopic composition
irrigation
wastewater
strontium isotope
drainage water
baseflow
strontium
rift zone
boron
river flow
water
river water
tributary
water flow
mass balance

Cite this

Farber, E., Vengosh, A., Gavrieli, I., Marie, A., Bullen, T. D., Mayer, B., ... Shavit, U. (2004). The origin and mechanisms of salinization of the Lower Jordan River. Geochimica Et Cosmochimica Acta, 68(9), 1989-2006. https://doi.org/10.1016/j.gca.2003.09.021

The origin and mechanisms of salinization of the Lower Jordan River. / Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, A.; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.

In: Geochimica Et Cosmochimica Acta, Vol. 68, No. 9, 01.05.2004, p. 1989-2006.

Research output: Contribution to journalArticle

Farber, E, Vengosh, A, Gavrieli, I, Marie, A, Bullen, TD, Mayer, B, Holtzman, R, Segal, M & Shavit, U 2004, 'The origin and mechanisms of salinization of the Lower Jordan River' Geochimica Et Cosmochimica Acta, vol. 68, no. 9, pp. 1989-2006. https://doi.org/10.1016/j.gca.2003.09.021
Farber E, Vengosh A, Gavrieli I, Marie A, Bullen TD, Mayer B et al. The origin and mechanisms of salinization of the Lower Jordan River. Geochimica Et Cosmochimica Acta. 2004 May 1;68(9):1989-2006. https://doi.org/10.1016/j.gca.2003.09.021
Farber, E. ; Vengosh, A. ; Gavrieli, I. ; Marie, A. ; Bullen, T.D. ; Mayer, B. ; Holtzman, R. ; Segal, M. ; Shavit, U. / The origin and mechanisms of salinization of the Lower Jordan River. In: Geochimica Et Cosmochimica Acta. 2004 ; Vol. 68, No. 9. pp. 1989-2006.
@article{56ea9c4010f441dc95ff709144303484,
title = "The origin and mechanisms of salinization of the Lower Jordan River",
abstract = "The chemical and isotopic (87Sr/86Sr, δ11B, δ34Ssulfate, δ18Owater, δ15Nnitrate) compositions of water from the Lower Jordan River and its major tributaries between the Sea of Galilee and the Dead Sea were determined in order to reveal the origin of the salinity of the Jordan River. We identified three separate hydrological zones along the flow of the river: (1) A northern section (20 km downstream of its source) where the base flow composed of diverted saline and wastewaters is modified due to discharge of shallow sulfate-rich groundwater, characterized by low 87Sr/86Sr (0.7072), δ34Ssulfate (−2‰), high δ11B (∼36‰), δ15Nnitrate (∼15‰) and high δ18Owater (−2 to–3‰) values. The shallow groundwater is derived from agricultural drainage water mixed with natural saline groundwater and discharges to both the Jordan and Yarmouk rivers. The contribution of the groundwater component in the Jordan River flow, deduced from mixing relationships of solutes and strontium isotopes, varies from 20 to 50{\%} of the total flow. (2) A central zone (20–50 km downstream from its source) where salt variations are minimal and the rise of 87Sr/86Sr and SO4/Cl ratios reflects predominance of eastern surface water flows. (3) A southern section (50–100 km downstream of its source) where the total dissolved solids of the Jordan River increase, particularly during the spring (70–80 km) and summer (80–100 km) to values as high as 11.1 g/L. Variations in the chemical and isotopic compositions of river water along the southern section suggest that the Zarqa River (87Sr/86Sr∼0.70865; δ11B∼25‰) has a negligible affect on the Jordan River. Instead, the river quality is influenced primarily by groundwater discharge composed of sulfate-rich saline groundwater (Cl-=31–180 mM; SO4/Cl∼0.2–0.5; Br/Cl∼2–3×10-3; 87Sr/86Sr∼0.70805; δ11B∼30‰; δ15Nnitrate ∼17‰, δ34Ssulfate=4–10‰), and Ca-chloride Rift valley brines (Cl-=846–1500 mM; Br/Cl∼6–8×10-3; 87Sr/86Sr∼0.7080; δ11B>40‰; δ34Ssulfate=4–10‰). Mixing calculations indicate that the groundwater discharged to the river is composed of varying proportions of brines and sulfate-rich saline groundwater. Solute mass balance calculations point to a ∼10{\%} contribution of saline groundwater (Cl−=282 to 564 mM) to the river. A high nitrate level (up to 2.5 mM) in the groundwater suggests that drainage of wastewater derived irrigation water is an important source for the groundwater. This irrigation water appears to leach Pleistocene sediments of the Jordan Valley resulting in elevated sulfate contents and altered strontium and boron isotopic compositions of the groundwater that in turn impacts the water quality of the lower Jordan River.",
author = "E. Farber and A. Vengosh and I. Gavrieli and A. Marie and T.D. Bullen and B. Mayer and R. Holtzman and M. Segal and U. Shavit",
year = "2004",
month = "5",
day = "1",
doi = "10.1016/j.gca.2003.09.021",
language = "English",
volume = "68",
pages = "1989--2006",
journal = "Geochimica Et Cosmochimica Acta",
number = "9",

}

TY - JOUR

T1 - The origin and mechanisms of salinization of the Lower Jordan River

AU - Farber, E.

AU - Vengosh, A.

AU - Gavrieli, I.

AU - Marie, A.

AU - Bullen, T.D.

AU - Mayer, B.

AU - Holtzman, R.

AU - Segal, M.

AU - Shavit, U.

PY - 2004/5/1

Y1 - 2004/5/1

N2 - The chemical and isotopic (87Sr/86Sr, δ11B, δ34Ssulfate, δ18Owater, δ15Nnitrate) compositions of water from the Lower Jordan River and its major tributaries between the Sea of Galilee and the Dead Sea were determined in order to reveal the origin of the salinity of the Jordan River. We identified three separate hydrological zones along the flow of the river: (1) A northern section (20 km downstream of its source) where the base flow composed of diverted saline and wastewaters is modified due to discharge of shallow sulfate-rich groundwater, characterized by low 87Sr/86Sr (0.7072), δ34Ssulfate (−2‰), high δ11B (∼36‰), δ15Nnitrate (∼15‰) and high δ18Owater (−2 to–3‰) values. The shallow groundwater is derived from agricultural drainage water mixed with natural saline groundwater and discharges to both the Jordan and Yarmouk rivers. The contribution of the groundwater component in the Jordan River flow, deduced from mixing relationships of solutes and strontium isotopes, varies from 20 to 50% of the total flow. (2) A central zone (20–50 km downstream from its source) where salt variations are minimal and the rise of 87Sr/86Sr and SO4/Cl ratios reflects predominance of eastern surface water flows. (3) A southern section (50–100 km downstream of its source) where the total dissolved solids of the Jordan River increase, particularly during the spring (70–80 km) and summer (80–100 km) to values as high as 11.1 g/L. Variations in the chemical and isotopic compositions of river water along the southern section suggest that the Zarqa River (87Sr/86Sr∼0.70865; δ11B∼25‰) has a negligible affect on the Jordan River. Instead, the river quality is influenced primarily by groundwater discharge composed of sulfate-rich saline groundwater (Cl-=31–180 mM; SO4/Cl∼0.2–0.5; Br/Cl∼2–3×10-3; 87Sr/86Sr∼0.70805; δ11B∼30‰; δ15Nnitrate ∼17‰, δ34Ssulfate=4–10‰), and Ca-chloride Rift valley brines (Cl-=846–1500 mM; Br/Cl∼6–8×10-3; 87Sr/86Sr∼0.7080; δ11B>40‰; δ34Ssulfate=4–10‰). Mixing calculations indicate that the groundwater discharged to the river is composed of varying proportions of brines and sulfate-rich saline groundwater. Solute mass balance calculations point to a ∼10% contribution of saline groundwater (Cl−=282 to 564 mM) to the river. A high nitrate level (up to 2.5 mM) in the groundwater suggests that drainage of wastewater derived irrigation water is an important source for the groundwater. This irrigation water appears to leach Pleistocene sediments of the Jordan Valley resulting in elevated sulfate contents and altered strontium and boron isotopic compositions of the groundwater that in turn impacts the water quality of the lower Jordan River.

AB - The chemical and isotopic (87Sr/86Sr, δ11B, δ34Ssulfate, δ18Owater, δ15Nnitrate) compositions of water from the Lower Jordan River and its major tributaries between the Sea of Galilee and the Dead Sea were determined in order to reveal the origin of the salinity of the Jordan River. We identified three separate hydrological zones along the flow of the river: (1) A northern section (20 km downstream of its source) where the base flow composed of diverted saline and wastewaters is modified due to discharge of shallow sulfate-rich groundwater, characterized by low 87Sr/86Sr (0.7072), δ34Ssulfate (−2‰), high δ11B (∼36‰), δ15Nnitrate (∼15‰) and high δ18Owater (−2 to–3‰) values. The shallow groundwater is derived from agricultural drainage water mixed with natural saline groundwater and discharges to both the Jordan and Yarmouk rivers. The contribution of the groundwater component in the Jordan River flow, deduced from mixing relationships of solutes and strontium isotopes, varies from 20 to 50% of the total flow. (2) A central zone (20–50 km downstream from its source) where salt variations are minimal and the rise of 87Sr/86Sr and SO4/Cl ratios reflects predominance of eastern surface water flows. (3) A southern section (50–100 km downstream of its source) where the total dissolved solids of the Jordan River increase, particularly during the spring (70–80 km) and summer (80–100 km) to values as high as 11.1 g/L. Variations in the chemical and isotopic compositions of river water along the southern section suggest that the Zarqa River (87Sr/86Sr∼0.70865; δ11B∼25‰) has a negligible affect on the Jordan River. Instead, the river quality is influenced primarily by groundwater discharge composed of sulfate-rich saline groundwater (Cl-=31–180 mM; SO4/Cl∼0.2–0.5; Br/Cl∼2–3×10-3; 87Sr/86Sr∼0.70805; δ11B∼30‰; δ15Nnitrate ∼17‰, δ34Ssulfate=4–10‰), and Ca-chloride Rift valley brines (Cl-=846–1500 mM; Br/Cl∼6–8×10-3; 87Sr/86Sr∼0.7080; δ11B>40‰; δ34Ssulfate=4–10‰). Mixing calculations indicate that the groundwater discharged to the river is composed of varying proportions of brines and sulfate-rich saline groundwater. Solute mass balance calculations point to a ∼10% contribution of saline groundwater (Cl−=282 to 564 mM) to the river. A high nitrate level (up to 2.5 mM) in the groundwater suggests that drainage of wastewater derived irrigation water is an important source for the groundwater. This irrigation water appears to leach Pleistocene sediments of the Jordan Valley resulting in elevated sulfate contents and altered strontium and boron isotopic compositions of the groundwater that in turn impacts the water quality of the lower Jordan River.

UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-1842810988&partnerID=MN8TOARS

U2 - 10.1016/j.gca.2003.09.021

DO - 10.1016/j.gca.2003.09.021

M3 - Article

VL - 68

SP - 1989

EP - 2006

JO - Geochimica Et Cosmochimica Acta

JF - Geochimica Et Cosmochimica Acta

IS - 9

ER -