The importance of lithofacies control on fluid migration in heterogeneous aeolian formations for geological CO2 storage: Lessons from observational evidence and modelling of bleached palaeoreservoirs at Salt Wash Graben, Utah

Andrew Newell, Azadeh Pourmalek, Seyed M. Shariatipour, A.S Butcher

    Research output: Contribution to journalArticlepeer-review

    4 Citations (Scopus)
    7 Downloads (Pure)

    Abstract

    Exhumed bleached palaeoreservoirs provide a means of understanding fluid flow processes in geological media because the former movement of fluids is preserved as visible geochemical changes (grey bleaching of continental red-beds). The bleached palaeoreservoirs of the Jurassic Entrada Sandstone occur in a region (Utah) where there are high fluxes of naturally-occurring CO2 and form outcrop analogues for processes related to geological storage of CO2. In this paper a bleached palaeoreservoir now exposed at outcrop is used to test the importance of geological heterogeneity on fluid flow. The bleached palaeoreservoir is developed in ‘wet aeolian’ lithofacies composed of alternating layers of sandstone and cemented muddy sandstone that range across three or more orders of magnitude in permeability. Despite these permeability contrasts the bleaching shows a remarkably uniform distribution within the palaeoreservoir that crosses lithofacies boundaries. Evidence from bleaching therefore suggests that geological heterogeneity within the range 1–103 millidarcies should not greatly impede the relatively uniform distribution of low-viscosity CO2 charged fluids throughout a reservoir: a conclusion that has been substantiated here by flow modelling. Residence time is an important factor and where flows are transient the distribution of bleaching and modelling shows that flows are confined to high-permeability lithofacies.
    Original languageEnglish
    Article number102841
    Number of pages17
    JournalInternational Journal of Greenhouse Gas Control
    Volume91
    Early online date3 Oct 2019
    DOIs
    Publication statusPublished - Dec 2019

    Bibliographical note

    NOTICE: this is the author’s version of a work that was accepted for publication in International Journal of Greenhouse Gas Control. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Greenhouse Gas Control, 91,(2019) DOI: 10.1016/j.ijggc.2019.102841

    © 2019, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/10.1016/j.ijggc.2019.102841

    Keywords

    • Aeolian
    • Bleached palaeoreservoir
    • CO storage
    • Entrada Sandstone

    ASJC Scopus subject areas

    • Pollution
    • Energy(all)
    • Industrial and Manufacturing Engineering
    • Management, Monitoring, Policy and Law

    Fingerprint

    Dive into the research topics of 'The importance of lithofacies control on fluid migration in heterogeneous aeolian formations for geological CO2 storage: Lessons from observational evidence and modelling of bleached palaeoreservoirs at Salt Wash Graben, Utah'. Together they form a unique fingerprint.

    Cite this