Abstract
Indoor Environment Quality (IEQ) is grouped into four main categories: thermal comfort, indoor air quality (IAQ), visual and acoustic comfort. Individual aspects of IEQ are investigated to examine their impact on children's overall comfort in primary schools in the UK. This study has surveyed 805 children in 32 naturally ventilated classrooms during non-heating and heating seasons. This study has calculated the proportion of comfort votes by individual aspects of IEQ, predicted comfort votes by multilinear regression model and estimated the probability of having uncomfortable votes by binary logistic regression.
Results of this study highlight that the proportion of uncomfortable votes should be kept below 10%. The developed multilinear model suggests that for a unit change in Air Sensation Votes (ASVs) and operative temperatures (Top), comfort votes change by 0.28 and 0.12, respectively. Developed multilinear and logistic regression models show that ASVs have a more significant impact on overall comfort than Top. To achieve acceptable comfortable votes and keep the probability of having uncomfortable votes below 10%, ASVs and Top should be kept within these limits: [ASV = very fresh and Top = 19–27 °C], [ASV = fresh and Top = 19–24 °C], and [ASV = OK and Top = 19–22 °C]. The ranges suggest that better perception of IAQ makes up for higher temperatures. It is advised to maintain individual aspects of IEQ, however, dissatisfaction with one aspect of IEQ does not necessarily result in overall discomfort unless that aspect is extremely unacceptable. Investigating the most influential factors on occupants’ comfort suggests which building controls should be prioritized for designers.
Results of this study highlight that the proportion of uncomfortable votes should be kept below 10%. The developed multilinear model suggests that for a unit change in Air Sensation Votes (ASVs) and operative temperatures (Top), comfort votes change by 0.28 and 0.12, respectively. Developed multilinear and logistic regression models show that ASVs have a more significant impact on overall comfort than Top. To achieve acceptable comfortable votes and keep the probability of having uncomfortable votes below 10%, ASVs and Top should be kept within these limits: [ASV = very fresh and Top = 19–27 °C], [ASV = fresh and Top = 19–24 °C], and [ASV = OK and Top = 19–22 °C]. The ranges suggest that better perception of IAQ makes up for higher temperatures. It is advised to maintain individual aspects of IEQ, however, dissatisfaction with one aspect of IEQ does not necessarily result in overall discomfort unless that aspect is extremely unacceptable. Investigating the most influential factors on occupants’ comfort suggests which building controls should be prioritized for designers.
Original language | English |
---|---|
Article number | 107309 |
Journal | Building and Environment |
Volume | 185 |
Early online date | 21 Sep 2020 |
DOIs | |
Publication status | Published - Nov 2020 |
Bibliographical note
Funding Information:The authors would like to thank Professor James Brusey for his comments and insight that improved the paper. The authors would like to acknowledge headteachers, teachers and children in studied primary schools in Coventry for their cooperation. The authors appreciate the financial support of Coventry University , the UK in completing this research.
Publisher Copyright:
© 2020 Elsevier Ltd
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
Keywords
- Air sensation votes
- Indoor environment quality
- Operative temperature
- Overall comfort
- Regression analysis
- Schools
ASJC Scopus subject areas
- Environmental Engineering
- Civil and Structural Engineering
- Geography, Planning and Development
- Building and Construction