The experimental and numerical analysis of the ballistic performance of elastomer matrix Kevlar composites

S. Samaneh Asemani, Gholamhossein Liaghat, Hamed Ahmadi, Yavar Anani, Amin Khodadadi, Sahand Chitsaz Charandabi

    Research output: Contribution to journalArticlepeer-review

    11 Citations (Scopus)
    100 Downloads (Pure)


    In this paper, the behavior of high-velocity impact of Kevlar fabric and elastomer composites was investigated both experimentally and numerically. The experimental tests were performed by a gas gun device and hemispherical projectiles at different velocities, ranging from 122 m/s to 152 m/s for 2- and 4-layer samples. The penetration resistance of these composites during impact was determined using ABAQUS/Explicit. The present study's novelty lies in choosing the finite element model for Kevlar fabric and elastomer matrix in composites with nonlinear behavior to estimate the damage mechanism in the impact zone. For this purpose, the material model of the formable was used to define the damage criteria for Kevlar, and the material model of the VUMAT was used to consider the non-linear behavior and damage evolution of elastomer matrix with one of the damage criteria. Then, the dynamic behavior of the laminate was studied by a Split Hopkinson Pressure Bar. The effect of the number of layers, the shape of the projectile, the energy absorption and failure mechanisms were studied. The verification of this numerical model with experimental observations showed good agreement. The results reveal that elastomeric composites can cause to increase energy absorption and reduce the damaged area.

    Original languageEnglish
    Article number107311
    JournalPolymer Testing
    Early online date5 Aug 2021
    Publication statusPublished - Oct 2021

    Bibliographical note

    Funding Information:
    The authors gratefully acknowledge the help of Bu-Ali Sina University and Tarbiat Modares University in providing the necessary experimental facilities and technical support.

    Publisher Copyright:
    © 2021


    • Elastomeric composite
    • Failure mechanism
    • High-velocity impact
    • Numerical analysis

    ASJC Scopus subject areas

    • Organic Chemistry
    • Polymers and Plastics


    Dive into the research topics of 'The experimental and numerical analysis of the ballistic performance of elastomer matrix Kevlar composites'. Together they form a unique fingerprint.

    Cite this