The efficacy of a home-use metabolic device (Lumen) in response to a short-term low and high carbohydrate diet in healthy volunteers

Justin Roberts, Dirk Dugdale-Duwell, Joseph Lillis, Jorge Marques Pinto, Ash Willmott, Shlomo Yeshurun, Merav Mor, Tjeu Souren

    Research output: Contribution to journalArticlepeer-review

    45 Downloads (Pure)

    Abstract

    Background: Based on stoichiometric assumptions, and real-time assessment of expired carbon dioxide (%CO 2) and flow rate, the Lumen device provides potential for consumers/athletes to monitor metabolic responses to dietary programs outside of laboratory conditions. However, there is a paucity of research exploring device efficacy. This study aimed to evaluate Lumen device response to: i) a high-carbohydrate meal under laboratory conditions, and ii) a short-term low- or high-carbohydrate diet in healthy volunteers. Methods: Following institutional ethical approval, 12 healthy volunteers (age: 36 ± 4 yrs; body mass: 72.1 ± 3.6 kg; height: 1.71 ± 0.02 m) performed Lumen breath and Douglas bag expired air measures under fasted laboratory conditions and at 30 and 60 min after a high-carbohydrate (2 g·kg −1) meal, along with capilliarized blood glucose assessment. Data were analyzed using a one-way ANOVA, with ordinary least squares regression used to assess the model between Lumen expired carbon dioxide percentage (L%CO 2) and respiratory exchange ratio (RER). In a separate phase, 27 recreationally active adults (age: 42 ± 2 yrs; body mass: 71.9 ± 1.9 kg; height: 1.72 ± 0.02 m) completed a 7-day low- (~20% of energy intake [EI]; LOW) or high-carbohydrate diet (~60% of EI; HIGH) in a randomized, cross-over design under free-living conditions. L%CO 2 and derived Lumen Index (L I) were recorded daily across morning (fasted and post-breakfast) and evening (pre/post meal, pre-bed) periods. Repeated measures ANOVA were employed for main analyses, with Bonferroni post-hoc assessment applied (P ≤ 0.05). Results: Following the carbohydrate test-meal, L%CO 2 increased from 4.49 ± 0.05% to 4.80 ± 0.06% by 30 min, remaining elevated at 4.76 ± 0.06% by 60 min post-feeding (P < 0.001, η p 2 = 0.74). Similarly, RER increased by 18.1% from 0.77 ± 0.03 to 0.91 ± 0.02 by 30 min post-meal (P = 0.002). When considering peak data, regression analysis demonstrated a significant model effect between RER and L%CO 2 (F = 5.62, P = 0.03, R 2 = 0.20). Following main dietary interventions, no significant interactions (diet × day) were found. However, main diet effects were evident across all time-points assessed, highlighting significant differences for both L%CO 2 and L I between LOW and HIGH conditions (P < 0.003). For L%CO 2, this was particularly noted under fasted (4.35 ± 0.07 vs. 4.46 ± 0.06%, P = 0.001), pre-evening meal (4.35 ± 0.07 vs. 4.50 ± 0.06%, P < 0.001), and pre-bed time-points (4.51 ± 0.08 vs. 4.61 ± 0.06%, P = 0.005). Conclusion: Our findings demonstrated that a portable, home-use metabolic device (Lumen) detected significantly increased expired %CO 2 in response to a high-carbohydrate meal, and may be useful in tracking mean weekly changes to acute dietary carbohydrate modifications. Additional research is warranted to further determine the practical and clinical efficacy of the Lumen device in applied compared to laboratory settings.

    Original languageEnglish
    Article number2185537
    Number of pages19
    JournalJournal of the International Society of Sports Nutrition
    Volume20
    Issue number1
    Early online date2 Mar 2023
    DOIs
    Publication statusE-pub ahead of print - 2 Mar 2023

    Bibliographical note

    2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    Funder

    Equipment support was provided by MetaFlow Ltd. Open Access funding was provided by Anglia Ruskin University. The authors would like to acknowledge Andrew Nwajei for his support in undertaking the laboratory-based device assessment phase. The authors would also like to thank MetaFlow Ltd. for their input in providing study equipment and technical support.

    Publisher Copyright:
    © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    Keywords

    • Lumen
    • carbohydrate
    • dietary
    • metabolism
    • nutrition
    • respiratory

    ASJC Scopus subject areas

    • Food Science
    • Nutrition and Dietetics

    Fingerprint

    Dive into the research topics of 'The efficacy of a home-use metabolic device (Lumen) in response to a short-term low and high carbohydrate diet in healthy volunteers'. Together they form a unique fingerprint.

    Cite this