Abstract
The aim of the present paper is to identify the effects of sampling locations and loading waveforms on high-temperature low-cycle fatigue (HTLCF) and creepfatigue life of a forged and precipitation hardened nickel-based GH4169 superalloy. Both the deformation and failure mechanisms are considered here. It has beenrevealed that HTLCF and creep-fatigue life of specimens were influenced by inhomogeneous microstructures at different locations. Compared with the HTLCF tests, the presence of dwell times in creep-fatigue tests tended to reduce number of cycles to failure. Intergranular damage was observed at both crack initiation andpropagation stages. For the dwell times under tension, the intergranular damage was mainly associated with precipitate-assist voids. However, oxidation accounted for the presence of intergranular damage for the dwell times under compression.
Original language | English |
---|---|
Pages (from-to) | 190-201 |
Number of pages | 12 |
Journal | International Journal of Fatigue |
Volume | 97 |
Early online date | 10 Jan 2017 |
DOIs | |
Publication status | Published - Apr 2017 |
Bibliographical note
NOTICE: this is the author’s version of a work that was accepted for publication in International Journal of Fatigue. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Fatigue, [97, (2017)] DOI: 10.1016/j.ijfatigue.2017.01.002© 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Keywords
- Creep-fatigue
- Nickel-based superalloy
- Microstructure
- Failure mechanism
- Oxidation