The effect of psyllium on fasting blood sugar, HbA1c, HOMA IR, and insulin control: a GRADE-assessed systematic review and meta-analysis of randomized controlled trials

Zeinab Gholami, Cain C. T. Clark, Zamzam Paknahad

Research output: Contribution to journalArticlepeer-review

14 Downloads (Pure)

Abstract

There is equivocal evidence that psyllium can prevent or attenuate increases in fasting blood sugar. Therefore, this systematic review and meta-analysis sought to investigate the influence of psyllium on hemoglobin A1C (HbA1c), fasting blood sugar (FBS), insulin, and Homeostatic Model Assessment of Insulin Resistance (HOMA IR). We searched PubMed, ISI Web of Science (WOS), and Scopus for eligible publications, up to 15 July 2022, including randomized controlled trials (RCT) assessing the effect of psyllium on HbA1c, FBS, insulin, and HOMA IR levels in adults. Using a random effects model, we report the weighted mean differences (WMD) with 95% confidence intervals (CI). In this article, 19 RCT studies, consisting of 962 participants, were included. Psyllium significantly decreased FBS, HbA1c, and HOMA IR levels, but not insulin levels, as compared to placebo (FBS: WMD): -6.89; 95% CI: -10.62, -3.16; p < .001), HbA1c: (WMD: -0.75; 95% CI: -1.21, -0.29; p < .001), HOMA IR: (WMD: -1.17; 95% CI: -2.11, -0.23; p < .05), and insulin: (WMD: -2.08; 95% CI: -4.21, -0.035; p > .05)). Subgroup analyses illustrated differences in the effects of psyllium on FBS: dosages less than and more than 10 g/d showed significant differences (p value < 0.05). However, it was not significant in intervention durations less than 50 days (p value > 0.05). For HbA1c: psyllium consumption less than 10 g/d (p value > 0.05) was non-significant. For HOMA IR and insulin: no significant changes were noted with psyllium consumption less than vs. more than 10 g/d. In conclusion, we found that psyllium could significantly decrease FBS, HbA1c, and HOMA IR levels, but not insulin levels, as compared to placebo.
Original languageEnglish
Article number82
Number of pages13
JournalBMC Endocrine Disorders
Volume24
Issue number1
Early online date6 Jun 2024
DOIs
Publication statusE-pub ahead of print - 6 Jun 2024

Bibliographical note

© The Author(s) 2024.
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Funder

Present study has been financially supported by a grant from Isfahan University of Medical Sciences, (Code: IR.MUI.RESEARCH.REC.1401.396, Grant number: 1401332).

Keywords

  • HbA1c
  • FBS
  • HOMA IR
  • Psyllium
  • Insulin

Fingerprint

Dive into the research topics of 'The effect of psyllium on fasting blood sugar, HbA1c, HOMA IR, and insulin control: a GRADE-assessed systematic review and meta-analysis of randomized controlled trials'. Together they form a unique fingerprint.

Cite this