The Effect of Aquifer/Caprock Interface on Geological Storage of CO2

Syed Shariatipour, Gillian Pickup, Eric J. Mackay

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

The migration of CO2 stored in deep saline aquifers depends on the morphology of the top of the aquifer. Topographical highs, such as anticlines, may trap CO2 and limit the distance migrated, or elevated ridges may provide pathways enabling CO2 to migrate further from the injector. For example, seismic data of the Utsira formation at the Sleipner storage site indicates that a branch of the CO2 plume is moving to the north [1]. It is therefore important to study the interface between the aquifer and the caprock when assessing risk as CO2 storage sites. Undulations in the top surface of an aquifer may either be caused by sedimentary structures [2], or by folding. In addition, irregularities may be generated by faulting [2]. Large-scale features are detected using seismic data (i.e. structures with amplitudes greater than 10 m), and such structures will generally be included in reservoir or aquifer models. However, smaller- scale features could also have an effect on a CO2 plume migration, and this is the topic of our study. We have conducted simulations in models with a range of top-surface morphology, and have examined the distance migrated and the amount of dissolution. The results from this study suggest that the effects of sub-seismic variations in the topography of the aquifer/caprock interface are unlikely to have a significant impact on the migration and dissolution of CO2 in a saline aquifer, compared with tilt or permeability anisotropy. The results were most sensitive to the kv/kh ratio during the injection period.
LanguageEnglish
Pages5544–5555
Number of pages12
JournalEnergy Procedia
Volume63
DOIs
Publication statusE-pub ahead of print - 31 Dec 2014

Fingerprint

Aquifers
Dissolution
Faulting
Topography
Surface morphology
Anisotropy

Bibliographical note

This paper was given at the 12th International Conference on Greenhouse Gas Control Technologies, GHGT 2014; University of Texas at AustinAustin; United States; 5 October 2014 through 9 October 2014
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

Keywords

  • CO2 storage
  • interface between caprock and storage formation

Cite this

The Effect of Aquifer/Caprock Interface on Geological Storage of CO2. / Shariatipour, Syed; Pickup, Gillian; Mackay, Eric J.

In: Energy Procedia, Vol. 63, 31.12.2014, p. 5544–5555.

Research output: Contribution to journalArticle

Shariatipour, Syed ; Pickup, Gillian ; Mackay, Eric J. / The Effect of Aquifer/Caprock Interface on Geological Storage of CO2. In: Energy Procedia. 2014 ; Vol. 63. pp. 5544–5555.
@article{d48238f3425c4f529e31ccb50092b6f1,
title = "The Effect of Aquifer/Caprock Interface on Geological Storage of CO2",
abstract = "The migration of CO2 stored in deep saline aquifers depends on the morphology of the top of the aquifer. Topographical highs, such as anticlines, may trap CO2 and limit the distance migrated, or elevated ridges may provide pathways enabling CO2 to migrate further from the injector. For example, seismic data of the Utsira formation at the Sleipner storage site indicates that a branch of the CO2 plume is moving to the north [1]. It is therefore important to study the interface between the aquifer and the caprock when assessing risk as CO2 storage sites. Undulations in the top surface of an aquifer may either be caused by sedimentary structures [2], or by folding. In addition, irregularities may be generated by faulting [2]. Large-scale features are detected using seismic data (i.e. structures with amplitudes greater than 10 m), and such structures will generally be included in reservoir or aquifer models. However, smaller- scale features could also have an effect on a CO2 plume migration, and this is the topic of our study. We have conducted simulations in models with a range of top-surface morphology, and have examined the distance migrated and the amount of dissolution. The results from this study suggest that the effects of sub-seismic variations in the topography of the aquifer/caprock interface are unlikely to have a significant impact on the migration and dissolution of CO2 in a saline aquifer, compared with tilt or permeability anisotropy. The results were most sensitive to the kv/kh ratio during the injection period.",
keywords = "CO2 storage, interface between caprock and storage formation",
author = "Syed Shariatipour and Gillian Pickup and Mackay, {Eric J.}",
note = "This paper was given at the 12th International Conference on Greenhouse Gas Control Technologies, GHGT 2014; University of Texas at AustinAustin; United States; 5 October 2014 through 9 October 2014 {\circledC} 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).",
year = "2014",
month = "12",
day = "31",
doi = "10.1016/j.egypro.2014.11.588",
language = "English",
volume = "63",
pages = "5544–5555",
journal = "Energy Procedia",
issn = "1876-6102",
publisher = "Elsevier",

}

TY - JOUR

T1 - The Effect of Aquifer/Caprock Interface on Geological Storage of CO2

AU - Shariatipour, Syed

AU - Pickup, Gillian

AU - Mackay, Eric J.

N1 - This paper was given at the 12th International Conference on Greenhouse Gas Control Technologies, GHGT 2014; University of Texas at AustinAustin; United States; 5 October 2014 through 9 October 2014 © 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

PY - 2014/12/31

Y1 - 2014/12/31

N2 - The migration of CO2 stored in deep saline aquifers depends on the morphology of the top of the aquifer. Topographical highs, such as anticlines, may trap CO2 and limit the distance migrated, or elevated ridges may provide pathways enabling CO2 to migrate further from the injector. For example, seismic data of the Utsira formation at the Sleipner storage site indicates that a branch of the CO2 plume is moving to the north [1]. It is therefore important to study the interface between the aquifer and the caprock when assessing risk as CO2 storage sites. Undulations in the top surface of an aquifer may either be caused by sedimentary structures [2], or by folding. In addition, irregularities may be generated by faulting [2]. Large-scale features are detected using seismic data (i.e. structures with amplitudes greater than 10 m), and such structures will generally be included in reservoir or aquifer models. However, smaller- scale features could also have an effect on a CO2 plume migration, and this is the topic of our study. We have conducted simulations in models with a range of top-surface morphology, and have examined the distance migrated and the amount of dissolution. The results from this study suggest that the effects of sub-seismic variations in the topography of the aquifer/caprock interface are unlikely to have a significant impact on the migration and dissolution of CO2 in a saline aquifer, compared with tilt or permeability anisotropy. The results were most sensitive to the kv/kh ratio during the injection period.

AB - The migration of CO2 stored in deep saline aquifers depends on the morphology of the top of the aquifer. Topographical highs, such as anticlines, may trap CO2 and limit the distance migrated, or elevated ridges may provide pathways enabling CO2 to migrate further from the injector. For example, seismic data of the Utsira formation at the Sleipner storage site indicates that a branch of the CO2 plume is moving to the north [1]. It is therefore important to study the interface between the aquifer and the caprock when assessing risk as CO2 storage sites. Undulations in the top surface of an aquifer may either be caused by sedimentary structures [2], or by folding. In addition, irregularities may be generated by faulting [2]. Large-scale features are detected using seismic data (i.e. structures with amplitudes greater than 10 m), and such structures will generally be included in reservoir or aquifer models. However, smaller- scale features could also have an effect on a CO2 plume migration, and this is the topic of our study. We have conducted simulations in models with a range of top-surface morphology, and have examined the distance migrated and the amount of dissolution. The results from this study suggest that the effects of sub-seismic variations in the topography of the aquifer/caprock interface are unlikely to have a significant impact on the migration and dissolution of CO2 in a saline aquifer, compared with tilt or permeability anisotropy. The results were most sensitive to the kv/kh ratio during the injection period.

KW - CO2 storage

KW - interface between caprock and storage formation

U2 - 10.1016/j.egypro.2014.11.588

DO - 10.1016/j.egypro.2014.11.588

M3 - Article

VL - 63

SP - 5544

EP - 5555

JO - Energy Procedia

T2 - Energy Procedia

JF - Energy Procedia

SN - 1876-6102

ER -