Synthesis and physical properties of (Zr1−x,Tix)3AlC2MAX phases

Eugenio Zapata-Solvas, Mohammad Hadi, Denis Horlait, David Parfitt, Alex Thibaud, Alexander Chroneos, William Lee

    Research output: Contribution to journalArticlepeer-review

    60 Citations (Scopus)
    50 Downloads (Pure)

    Abstract

    MAX phase solid solutions physical and mechanical properties may be tuned via changes in composition, giving them a range of possible technical applications. In the present study, we extend the MAX phase family by synthesizing (Zr1−xTix)3AlC2 quaternary MAX phases and investigating their mechanical properties using density functional theory (DFT). The experimentally determined lattice parameters are in good agreement with the lattice parameters derived by DFT and deviate <0.5% from Vegard's law. Ti3AlC2 has a higher Vickers hardness as compared to Zr3AlC2, in agreement with the available experimental data.
    Original languageEnglish
    Pages (from-to)3393-3401
    Number of pages9
    JournalJournal of the American Ceramic Society
    Volume100
    Issue number8
    Early online date21 Apr 2017
    DOIs
    Publication statusPublished - Aug 2017

    Bibliographical note

    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
    © 2017 The Authors. Journal of the American Ceramic Society published by Wiley Periodicals, Inc. on behalf of American Ceramic Society (ACERS)

    Keywords

    • DFT
    • MAX Phases
    • Synthesis

    Fingerprint

    Dive into the research topics of 'Synthesis and physical properties of (Zr1−x,Tix)3AlC2MAX phases'. Together they form a unique fingerprint.

    Cite this