Synthesis and characterization of highly durable hydrocarbon-based composite membrane for zinc-bromine redox flow battery

Edzordzi Kwame Gikunoo, Dabin Han, Mohanraj Vinothkannan, Sangaraju Shanmugam

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Low-cost, durable, and high-performance membranes are urgent requirements for zinc bromine redox flow battery (ZBFB) applications. Sulfonated poly (ether ether ketone), SPEEK is a low-cost, ion-exchange membrane with excellent ionic conductivity, but its backbone is susceptible to the harsh bromine environment. Herein, the successful incorporation of a multifunctional nanofiller, perovskite-structured cerium titanate nanoparticles dispersed on smooth carbon nanofibers (p-CT/CNF) with varying carbon content into the polymer matrix protects the SPEEK backbone, reduces the crossover of active species and improves the selectivity of the composite membrane. At high current density of 100 mA cm−2, the SP-p-CT350 membrane in ZBFB shows an energy efficiency of 73.34% compared to pristine SPEEK and SP-p-CT320 with 70.32 and 69.71%, respectively. Interestingly, the excellent dispersion of the nanofiller notably reduces the self-discharge rate of SP-p-CT350, retaining the OCV at 1.70 V for 117 h which is 1.86 and 1.75 times greater than pristine SPEEK and SP-p-CT320. Furthermore, with the effect of loading to determine the durability of the SP-p-CT350 membrane, SP-p-CT350 with a nanofiller loading of 0.5 wt% demonstrates stable battery performance across 500 cycles at a current density of 40 mA cm−2 with an outstanding energy efficiency of 81.13%.

Original languageEnglish
Article number232821
Number of pages10
JournalJournal of Power Sources
Volume563
Early online date18 Feb 2023
DOIs
Publication statusPublished - 15 Apr 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023 Elsevier B.V.

Funder

This research was supported by the “2023 Joint Research Project of Institutes of Science and Technology”.

Keywords

  • SPEEK
  • p-CT/CNF
  • ZBFB performance
  • Bromine stability
  • Durability

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Synthesis and characterization of highly durable hydrocarbon-based composite membrane for zinc-bromine redox flow battery'. Together they form a unique fingerprint.

Cite this