Split-Injection Strategies under Full-Load Using DMF, A New Biofuel Candidate, Compared to Ethanol in a GDI Engine

Ritchie Daniel, Chongming Wang, Hongming Xu, Guohong Tian

Research output: Other contribution

5 Citations (Scopus)

Abstract

It is well known that direct injection (DI) is a technology enabler for stratified combustion in spark-ignition (SI) engines. At full load or wide-open throttle (WOT), partial charge stratification can suppress knock, enabling greater spark advance and increased torque. Such split-injection or double-pulse injection strategies are employed when using gasoline in DI (GDI). However, as the use of biofuels is set to increase, is this mode still beneficial? In the current study, the authors attempt to answer this question using two gasoline-alternative biofuels: firstly, ethanol; the widely used gasoline-alternative biofuel and secondly, 2,5-dimethylfuran (DMF); the new biofuel candidate. These results have been benchmarked against gasoline in a single-cylinder, spray-guided DISI research engine at WOT (λ = 1 and 1500 rpm). Firstly, single-pulse start of injection (SOI) timing sweeps were conducted with each fuel to find the highest volumetric efficiency and IMEP. The resulting optimum SOI timing for gasoline was then used as the first injection (SOI₁) with each fuel in the split-injection tests. In this instance, second SOI timing (SOI₂) sweeps were made using two split-ratios (SOI₁:SOI₂ = 1:1 and 2:1). For the single-pulse SOI timing sweeps, the change in IMEP when using ethanol is symmetrical either side of the maximum. However, when using gasoline and DMF, the behavior is asymmetrical, with maximums later and earlier than with ethanol, respectively. For split-injection, the maximum IMEP increases when fuelled with the biofuels, whilst maintaining acceptable engine stability. This increase, however, is much more dependent on SOI₂ timing than with gasoline, due to the deterioration of in-cylinder mixing and slower combustion.
Original languageEnglish
PublisherSAE International
ISBN (Print)0148-7191
DOIs
Publication statusPublished - 16 Apr 2012

Fingerprint

Biofuels
Gasoline
Ethanol
Engines
Direct injection
Engine cylinders
Internal combustion engines
Electric sparks
Deterioration
Torque

Cite this

Split-Injection Strategies under Full-Load Using DMF, A New Biofuel Candidate, Compared to Ethanol in a GDI Engine. / Daniel, Ritchie; Wang, Chongming; Xu, Hongming; Tian, Guohong.

SAE International. 2012, .

Research output: Other contribution

@misc{8cb74a90dcc24eda9ed466bf7438e670,
title = "Split-Injection Strategies under Full-Load Using DMF, A New Biofuel Candidate, Compared to Ethanol in a GDI Engine",
abstract = "It is well known that direct injection (DI) is a technology enabler for stratified combustion in spark-ignition (SI) engines. At full load or wide-open throttle (WOT), partial charge stratification can suppress knock, enabling greater spark advance and increased torque. Such split-injection or double-pulse injection strategies are employed when using gasoline in DI (GDI). However, as the use of biofuels is set to increase, is this mode still beneficial? In the current study, the authors attempt to answer this question using two gasoline-alternative biofuels: firstly, ethanol; the widely used gasoline-alternative biofuel and secondly, 2,5-dimethylfuran (DMF); the new biofuel candidate. These results have been benchmarked against gasoline in a single-cylinder, spray-guided DISI research engine at WOT (λ = 1 and 1500 rpm). Firstly, single-pulse start of injection (SOI) timing sweeps were conducted with each fuel to find the highest volumetric efficiency and IMEP. The resulting optimum SOI timing for gasoline was then used as the first injection (SOI₁) with each fuel in the split-injection tests. In this instance, second SOI timing (SOI₂) sweeps were made using two split-ratios (SOI₁:SOI₂ = 1:1 and 2:1). For the single-pulse SOI timing sweeps, the change in IMEP when using ethanol is symmetrical either side of the maximum. However, when using gasoline and DMF, the behavior is asymmetrical, with maximums later and earlier than with ethanol, respectively. For split-injection, the maximum IMEP increases when fuelled with the biofuels, whilst maintaining acceptable engine stability. This increase, however, is much more dependent on SOI₂ timing than with gasoline, due to the deterioration of in-cylinder mixing and slower combustion.",
author = "Ritchie Daniel and Chongming Wang and Hongming Xu and Guohong Tian",
year = "2012",
month = "4",
day = "16",
doi = "10.4271/2012-01-0403",
language = "English",
isbn = "0148-7191",
publisher = "SAE International",
type = "Other",

}

TY - GEN

T1 - Split-Injection Strategies under Full-Load Using DMF, A New Biofuel Candidate, Compared to Ethanol in a GDI Engine

AU - Daniel, Ritchie

AU - Wang, Chongming

AU - Xu, Hongming

AU - Tian, Guohong

PY - 2012/4/16

Y1 - 2012/4/16

N2 - It is well known that direct injection (DI) is a technology enabler for stratified combustion in spark-ignition (SI) engines. At full load or wide-open throttle (WOT), partial charge stratification can suppress knock, enabling greater spark advance and increased torque. Such split-injection or double-pulse injection strategies are employed when using gasoline in DI (GDI). However, as the use of biofuels is set to increase, is this mode still beneficial? In the current study, the authors attempt to answer this question using two gasoline-alternative biofuels: firstly, ethanol; the widely used gasoline-alternative biofuel and secondly, 2,5-dimethylfuran (DMF); the new biofuel candidate. These results have been benchmarked against gasoline in a single-cylinder, spray-guided DISI research engine at WOT (λ = 1 and 1500 rpm). Firstly, single-pulse start of injection (SOI) timing sweeps were conducted with each fuel to find the highest volumetric efficiency and IMEP. The resulting optimum SOI timing for gasoline was then used as the first injection (SOI₁) with each fuel in the split-injection tests. In this instance, second SOI timing (SOI₂) sweeps were made using two split-ratios (SOI₁:SOI₂ = 1:1 and 2:1). For the single-pulse SOI timing sweeps, the change in IMEP when using ethanol is symmetrical either side of the maximum. However, when using gasoline and DMF, the behavior is asymmetrical, with maximums later and earlier than with ethanol, respectively. For split-injection, the maximum IMEP increases when fuelled with the biofuels, whilst maintaining acceptable engine stability. This increase, however, is much more dependent on SOI₂ timing than with gasoline, due to the deterioration of in-cylinder mixing and slower combustion.

AB - It is well known that direct injection (DI) is a technology enabler for stratified combustion in spark-ignition (SI) engines. At full load or wide-open throttle (WOT), partial charge stratification can suppress knock, enabling greater spark advance and increased torque. Such split-injection or double-pulse injection strategies are employed when using gasoline in DI (GDI). However, as the use of biofuels is set to increase, is this mode still beneficial? In the current study, the authors attempt to answer this question using two gasoline-alternative biofuels: firstly, ethanol; the widely used gasoline-alternative biofuel and secondly, 2,5-dimethylfuran (DMF); the new biofuel candidate. These results have been benchmarked against gasoline in a single-cylinder, spray-guided DISI research engine at WOT (λ = 1 and 1500 rpm). Firstly, single-pulse start of injection (SOI) timing sweeps were conducted with each fuel to find the highest volumetric efficiency and IMEP. The resulting optimum SOI timing for gasoline was then used as the first injection (SOI₁) with each fuel in the split-injection tests. In this instance, second SOI timing (SOI₂) sweeps were made using two split-ratios (SOI₁:SOI₂ = 1:1 and 2:1). For the single-pulse SOI timing sweeps, the change in IMEP when using ethanol is symmetrical either side of the maximum. However, when using gasoline and DMF, the behavior is asymmetrical, with maximums later and earlier than with ethanol, respectively. For split-injection, the maximum IMEP increases when fuelled with the biofuels, whilst maintaining acceptable engine stability. This increase, however, is much more dependent on SOI₂ timing than with gasoline, due to the deterioration of in-cylinder mixing and slower combustion.

U2 - 10.4271/2012-01-0403

DO - 10.4271/2012-01-0403

M3 - Other contribution

SN - 0148-7191

PB - SAE International

ER -