SPH Simulation of Sediment Movement from Dam Breaks

Xiaogang Zheng, Matteo Rubinato, Xingnian Liu, Yufei Ding, Ridong Chen, Ehsan Kazemi

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
37 Downloads (Pure)

Abstract

This study aims to develop a robust sediment transport model focusing on the vertical two-dimensional water–sediment two-phase flow in which sediments are constantly interacting, hitting each other, gradually becoming smoother and smaller, and accumulating when velocities decrease. The grid-based models currently available can be cumbersome when dealing with phenomena that require replication of this water–sediment interface. Therefore, a two-dimensional water–sediment two-phase flow model based on Smoothed Particle Hydrodynamics (SPH) is established in the macroscopic scale to simulate a large amount of sediment accumulation and propagation typical of a landslide caused by a dam break. In this study, water and sediments are treated as two kinds of fluids with different densities and viscosities to accurately simulate the flow structure, the sediment transport, and the water–sediment interaction process. The interaction model developed treats the interface of the two phases within a unified framework. The model developed was then tested against three applications, and the results obtained confirmed its accuracy in correctly replicating the movement of the sediment phase. The preliminary results obtained can be helpful in providing further insights into the mixing of water and sediments and their propagation following a dam break and the consequent wave profile generated.
Original languageEnglish
Article number3033
Number of pages26
JournalWater
Volume15
Issue number17
DOIs
Publication statusPublished - 24 Aug 2023

Bibliographical note

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Funder

This research work was supported by the National Key Research and Development Program of China (No. 2022YFE0128200).

Keywords

  • Lagrangian method
  • sediment
  • water–sediment
  • two-phase flow
  • SPH
  • dam break

Fingerprint

Dive into the research topics of 'SPH Simulation of Sediment Movement from Dam Breaks'. Together they form a unique fingerprint.

Cite this