Simultaneous prediction of toxicity of multiple chemicals to multiple species using multi-dimensional functional relationships

Richard Morton, Michael St J. Warne, Raymond L. Correll

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

A theoretical model is developed for the estimation of the toxicity of a large number of chemicals to a group of species for which the log-toxicity values have strong linear relationships. The model is a multi-dimensional functional relationship (FR) that allows for many missing values. It depends on an unobserved variate (denoted by ξ in the text), with a value for each chemical; for each species, the expectations of the log-toxicity values are each linearly related to ξ. There are worthwhile gains in multi-dimensional over the two-dimensional FRs hitherto used. The model is applied to data on the toxicity of 51 chemicals to 10 species. It allows for species to have unequal variance about their expectations. There is good prediction of log-toxicity from measurements on other species where only 30% of the combinations were measured even when the taxa are not closely related. Among the uses for this technique are (i) to predict toxicity for combinations of species and chemicals that have not been measured, (ii) to suggest a suitable range of concentrations for a new bioassay, (iii) identifying specificity, that is, chemicals that have a different relative toxicity for a particular species.

Original languageEnglish
Pages (from-to)765-784
Number of pages20
JournalEnvironmetrics
Volume19
Issue number8
DOIs
Publication statusPublished - 28 Jan 2008
Externally publishedYes

Fingerprint

Functional Relationship
Toxicity
toxicity
Prediction
prediction
Bioassay
Missing Values
chemical
Unequal
Theoretical Model
Specificity
bioassay
Linearly
Predict
Model
Range of data

Keywords

  • Inter-species relationships
  • Missing values
  • Multi-dimensional functional relationship
  • Toxicity

ASJC Scopus subject areas

  • Statistics and Probability
  • Ecological Modelling

Cite this

Simultaneous prediction of toxicity of multiple chemicals to multiple species using multi-dimensional functional relationships. / Morton, Richard; Warne, Michael St J.; Correll, Raymond L.

In: Environmetrics, Vol. 19, No. 8, 28.01.2008, p. 765-784.

Research output: Contribution to journalArticle

@article{61bbd77bde7d40d58c859796aac86efc,
title = "Simultaneous prediction of toxicity of multiple chemicals to multiple species using multi-dimensional functional relationships",
abstract = "A theoretical model is developed for the estimation of the toxicity of a large number of chemicals to a group of species for which the log-toxicity values have strong linear relationships. The model is a multi-dimensional functional relationship (FR) that allows for many missing values. It depends on an unobserved variate (denoted by ξ in the text), with a value for each chemical; for each species, the expectations of the log-toxicity values are each linearly related to ξ. There are worthwhile gains in multi-dimensional over the two-dimensional FRs hitherto used. The model is applied to data on the toxicity of 51 chemicals to 10 species. It allows for species to have unequal variance about their expectations. There is good prediction of log-toxicity from measurements on other species where only 30{\%} of the combinations were measured even when the taxa are not closely related. Among the uses for this technique are (i) to predict toxicity for combinations of species and chemicals that have not been measured, (ii) to suggest a suitable range of concentrations for a new bioassay, (iii) identifying specificity, that is, chemicals that have a different relative toxicity for a particular species.",
keywords = "Inter-species relationships, Missing values, Multi-dimensional functional relationship, Toxicity",
author = "Richard Morton and Warne, {Michael St J.} and Correll, {Raymond L.}",
year = "2008",
month = "1",
day = "28",
doi = "10.1002/env.892",
language = "English",
volume = "19",
pages = "765--784",
journal = "Environmetrics",
issn = "1180-4009",
publisher = "Wiley",
number = "8",

}

TY - JOUR

T1 - Simultaneous prediction of toxicity of multiple chemicals to multiple species using multi-dimensional functional relationships

AU - Morton, Richard

AU - Warne, Michael St J.

AU - Correll, Raymond L.

PY - 2008/1/28

Y1 - 2008/1/28

N2 - A theoretical model is developed for the estimation of the toxicity of a large number of chemicals to a group of species for which the log-toxicity values have strong linear relationships. The model is a multi-dimensional functional relationship (FR) that allows for many missing values. It depends on an unobserved variate (denoted by ξ in the text), with a value for each chemical; for each species, the expectations of the log-toxicity values are each linearly related to ξ. There are worthwhile gains in multi-dimensional over the two-dimensional FRs hitherto used. The model is applied to data on the toxicity of 51 chemicals to 10 species. It allows for species to have unequal variance about their expectations. There is good prediction of log-toxicity from measurements on other species where only 30% of the combinations were measured even when the taxa are not closely related. Among the uses for this technique are (i) to predict toxicity for combinations of species and chemicals that have not been measured, (ii) to suggest a suitable range of concentrations for a new bioassay, (iii) identifying specificity, that is, chemicals that have a different relative toxicity for a particular species.

AB - A theoretical model is developed for the estimation of the toxicity of a large number of chemicals to a group of species for which the log-toxicity values have strong linear relationships. The model is a multi-dimensional functional relationship (FR) that allows for many missing values. It depends on an unobserved variate (denoted by ξ in the text), with a value for each chemical; for each species, the expectations of the log-toxicity values are each linearly related to ξ. There are worthwhile gains in multi-dimensional over the two-dimensional FRs hitherto used. The model is applied to data on the toxicity of 51 chemicals to 10 species. It allows for species to have unequal variance about their expectations. There is good prediction of log-toxicity from measurements on other species where only 30% of the combinations were measured even when the taxa are not closely related. Among the uses for this technique are (i) to predict toxicity for combinations of species and chemicals that have not been measured, (ii) to suggest a suitable range of concentrations for a new bioassay, (iii) identifying specificity, that is, chemicals that have a different relative toxicity for a particular species.

KW - Inter-species relationships

KW - Missing values

KW - Multi-dimensional functional relationship

KW - Toxicity

UR - http://www.scopus.com/inward/record.url?scp=56049117097&partnerID=8YFLogxK

U2 - 10.1002/env.892

DO - 10.1002/env.892

M3 - Article

VL - 19

SP - 765

EP - 784

JO - Environmetrics

JF - Environmetrics

SN - 1180-4009

IS - 8

ER -