Abstract
This paper presents a simplified zero-dimensional mathematical model for a self-humidifying proton exchange membrane (PEM) fuel cell stack of 1 kW. The model incorporates major electric and thermodynamic variables and parameters involved in the operation of the PEM fuel cell under different operational conditions. Influence of each of these parameters and variables upon the operation and the performance of the PEM fuel cell are investigated. The mathematical equations are modeled by using Matlab–Simulink tools in order to simulate the operation of the developed model with a commercial available 1 kW horizon PEM fuel cell stack (H-1000), which is used for the purposes of model validation and tuning of the developed model. The model can be extrapolated to higher wattage fuel cells of similar arrangements. New equation is presented to determine the impact of using air to supply the PEM fuel cell instead of pure oxygen upon the concentration losses and the output voltage when useful current is drawn from it.
Original language | English |
---|---|
Pages (from-to) | 668-679 |
Number of pages | 12 |
Journal | Journal of Modern Power Systems and Clean Energy |
Volume | 4 |
Issue number | 4 |
Early online date | 15 Apr 2016 |
DOIs | |
Publication status | Published - Oct 2016 |
Externally published | Yes |
Bibliographical note
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Keywords
- proton exchange membrane fuel cell
- Activation Losses
- Ohmic Losses
- Concentration Losses
- Cathode Anode Model
- Membrane Hydration Model