Abstract
Community detection in signed networks is a challenging research problem, and is of great importance to understanding the structural and functional properties of signed networks. It aims at dividing nodes into different clusters with more intra-cluster and less inter-cluster links. Meanwhile, most positive links should lie within clusters and most negative links should lie between clusters. In recent years, some methods for community detection in signed networks have been proposed, but few of them focus on overlapping community detection. Moreover, most of them directly exploit the sparse link topology to detect communities, which often makes them perform poorly. In view of this, in this paper we propose a similarity preserving overlapping community detection (SPOCD) method. SPOCD firstly extracts node similarity information and geometric structure information from the link topology, and then uses a graph regularized binary semi-nonnegative matrix factorization (GRBSNMF) model to fuse these two sources of information to detect communities. Through this mechanism, nodes with high similarity can be well preserved in the same community. Besides, SPOCD devises a special discretization strategy to obtain the binary community indicator matrix, which is very convenient for directly identifying overlapping communities in signed networks. We conduct extensive experiments on synthetic and real-world signed networks, and the results demonstrate that our method outperforms state-of-the-art methods.
Original language | English |
---|---|
Pages (from-to) | 275-290 |
Number of pages | 16 |
Journal | Future Generation Computer Systems |
Volume | 116 |
Early online date | 4 Nov 2020 |
DOIs | |
Publication status | Published - Mar 2021 |
Bibliographical note
Funding Information:This work was supported in part by the National Natural Science Foundation of China under Grant 62077045 , Grant U1811263 and Grant 61772211 , in part by the Humanity and Social Science Youth Foundation of Ministry of Education of China under Grant 19YJCZH049 , in part by the Natural Science Foundation of Guangdong Province of China under Grant 2019A1515011292 , in part by the Science and Technology Support Program of Guangdong Province of China under Grant 2017A040405057 , and in part by the Science and Technology Support Program of Guangzhou City of China under Grant 201807010043 and Grant 201803020033 .
Publisher Copyright:
© 2020 Elsevier B.V.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
Keywords
- Graph regularization
- Node similarity
- Overlapping community detection
- Semi-nonnegative matrix factorization
- Signed networks
ASJC Scopus subject areas
- Software
- Hardware and Architecture
- Computer Networks and Communications