Abstract
Runway Safety Assistant Foreseeing Excursions (RUNSAFE) is a complete embedded system solution, that predicts a potential runway overrun of a civil aviation aircraft during takeoff and landing. This work examines the feasibility of such a system, through the algorithms and computations that predict the overruns. The system executes both static and dynamic calculations, with the former being dependent on and the latter independent to the user’s inputs. Their outcomes and the runway’s length are compared in real time to assess if the process will end up in an overrun. All inputs are specifically selected to either be available to the pilots or be retrieved from the existing avionics systems of the cockpit. A performance evaluation is conducted on both static and dynamic calculations, and metrics unveil the accuracy of the predictions and the time needed to converge to a reliable result. The solution is adapted for a Boeing 737-800 aircraft with CFM56-7B engines, but the calculations also apply for similar aircraft equipped with tricycle landing gear and turbofan engines, namely the whole Boeing 737 family, the Airbus A320 family, etc. The system is aligned with current standards and certification specifications, where applicable.
Original language | English |
---|---|
Article number | 705 |
Number of pages | 37 |
Journal | Aerospace |
Volume | 11 |
Issue number | 9 |
Early online date | 29 Aug 2024 |
DOIs | |
Publication status | E-pub ahead of print - 29 Aug 2024 |
Bibliographical note
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Keywords
- avionics
- decision support system
- embedded system
- runway safety
- runway excursions