Rolling and Sliding Modes of Nanodroplet Spreading: Molecular Simulations and a Continuum Approach

Sreehari Perumanath, Mykyta V. Chubynsky, Rohit Pillai, Matthew K. Borg, James E. Sprittles

Research output: Contribution to journalArticlepeer-review

17 Downloads (Pure)


Molecular simulations discover a new mode of dynamic wetting that manifests itself in the very earliest stages of spreading, after a droplet contacts a solid. The observed mode is a "rolling"type of motion, characterized by a contact angle lower than the classically assumed value of 180°, and precedes the conventional "sliding"mode of spreading. This motivates the development of a novel continuum framework that captures all modes of motion, allows the dominant physical mechanisms to be understood, and permits the study of larger droplets.

Original languageEnglish
Article number164001
Number of pages7
JournalPhysical Review Letters
Issue number16
Publication statusPublished - 19 Oct 2023

Bibliographical note

© 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the ""Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.


This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) under Grants No. EP/W031426/1, No. EP/S022848/1, No. EP/S029966/1, No. EP/P031684/1, No. EP/R007438/1, No. EP/N016602/1, and No. EP/V012002/1. All MD simulations were run on ARCHER2, the United Kingdom’s national supercomputing service, funded by an EPSRC/ARCHER2 Pioneer Project. S. P. acknowledges the support from the Leverhulme Trust via the Early Career Fellowship No. ECF-2021-137. The authors also acknowledge the comments and ideas of the referees that enabled us to significantly improve our Letter.

ASJC Scopus subject areas

  • Physics and Astronomy(all)


Dive into the research topics of 'Rolling and Sliding Modes of Nanodroplet Spreading: Molecular Simulations and a Continuum Approach'. Together they form a unique fingerprint.

Cite this