Abstract
Guiding catheters and guidewires are used extensively in pediatric cardiac catheterization procedures for congenital heart diseases (CHD). Detecting their positions in fluoroscopic X-ray images is important for several clinical applications, such as visibility enhancement for low dose X-ray images, and co-registration between 2D and 3D imaging modalities. As guiding catheters are made from thin plastic tubes, they can be deformed by cardiac and breathing motions. Therefore, detection is the essential step before automatic tracking of guiding catheters in live X-ray fluoroscopic images. However, there are several wire-like artifacts existing in X-ray images, which makes developing a real-time robust detection method very challenging. To solve those challenges in real-time, a localized machine learning algorithm is built to distinguish between guiding catheters and artifacts. As the machine learning algorithm is only applied to potential wire-like objects, which are obtained from vessel enhancement filters, the detection method is fast enough to be used in real-time applications. The other challenge is the low contrast between guiding catheters and background, as the majority of X-ray images are low dose. Therefore, the guiding catheter might be detected as a discontinuous curve object, such as a few disconnected line blocks from the vessel enhancement filter. A minimum energy method is developed to trace the whole wire object. Finally, the proposed methods are tested on 1102 images which are from 8 image sequences acquired from 3 clinical cases. Results show an accuracy of 0.87 ± 0.53 mm which is measured as the error distances between the detected object and the manually annotated object. The success rate of detection is 83.4%.
Original language | English |
---|---|
Title of host publication | Functional Imaging and Modelling of the Heart - 9th International Conference, FIMH 2017, Proceedings |
Publisher | Springer-Verlag London Ltd |
Pages | 172-182 |
Number of pages | 11 |
Volume | 10263 LNCS |
ISBN (Print) | 9783319594477 |
DOIs | |
Publication status | Published - 23 May 2017 |
Event | 9th International Conference on Functional Imaging and Modelling of the Heart - Toronto, Canada Duration: 11 Jun 2017 → 13 Jun 2017 Conference number: 9 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 10263 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 9th International Conference on Functional Imaging and Modelling of the Heart |
---|---|
Abbreviated title | FIMH 2017 |
Country/Territory | Canada |
City | Toronto |
Period | 11/06/17 → 13/06/17 |
Keywords
- Target Object
- Image Artifact
- Image Mask
- Line Block
- Vessel Filter
ASJC Scopus subject areas
- Theoretical Computer Science
- Computer Science(all)