Random number generators for massively parallel simulations on GPU

M. Manssen, Martin Weigel, A. K. Hartmann

    Research output: Contribution to journalArticle

    48 Citations (Scopus)

    Abstract

    High-performance streams of (pseudo) random numbers are crucial for the efficient implementation of countless stochastic algorithms, most importantly, Monte Carlo simulations and molecular dynamics simulations with stochastic thermostats. A number of implementations of random number generators has been discussed for GPU platforms before and some generators are even included in the CUDA supporting libraries. Nevertheless, not all of these generators are well suited for highly parallel applications where each thread requires its own generator instance. For this specific situation encountered, for instance, in simulations of lattice models, most of the high-quality generators with large states such as Mersenne twister cannot be used efficiently without substantial changes. We provide a broad review of existing CUDA variants of random-number generators and present the CUDA implementation of a new massively parallel high-quality, high-performance generator with a small memory load overhead.
    Original languageEnglish
    Pages (from-to)53-71
    JournalThe European Physical Journal Special Topics
    Volume210
    Issue number1
    DOIs
    Publication statusPublished - 2012

    Bibliographical note

    The full text is not available on the repository.

    Fingerprint

    Dive into the research topics of 'Random number generators for massively parallel simulations on GPU'. Together they form a unique fingerprint.

    Cite this