Radar Sensing for Activity Classification in Elderly People Exploiting Micro-Doppler Signatures using Machine Learning

William Taylor, Kia Dashtipour , Syed Aziz Shah, Amir Hussain, Qammer Hussain Abbasi , Muhammad Ali Imran

    Research output: Contribution to journalArticlepeer-review

    12 Citations (Scopus)
    56 Downloads (Pure)

    Abstract

    The health status of an elderly person can be identified by examining the additive effects of aging along with disease linked to it and can lead to ‘unstable incapacity’. This health status is determined by the apparent decline of independence in activities of daily living (ADLs). Detecting ADLs provides possibilities of improving the home life of elderly people as it can be applied to fall detection systems. This paper presents fall detection in elderly people based on radar image classification by examining their daily routine activities, using radar data that were previously collected for 99 volunteers. Machine learning techniques are used classify six human activities, namely walking, sitting, standing, picking up objects, drinking water and fall events. Different machine learning algorithms, such as random forest, K-nearest neighbours, support vector machine, long short-term memory, bi-directional long short-term memory and convolutional neural networks, were used for data classification. To obtain optimum results, we applied data processing techniques, such as principal component analysis and data augmentation, to the available radar images. The aim of this paper is to improve upon the results achieved using a publicly available dataset to further improve upon research of fall detection systems. It was found out that the best results were obtained using the CNN algorithm with principal component analysis and data augmentation together to obtain a result of 95.30% accuracy. The results also demonstrated that principal component analysis was most beneficial when the training data were expanded by augmentation of the available data. The results of our proposed approach, in comparison to the state of the art, have shown the highest accuracy.
    Original languageEnglish
    Article number3881
    Number of pages15
    JournalSensors
    Volume21
    Issue number11
    DOIs
    Publication statusPublished - 4 Jun 2021

    Bibliographical note

    This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    Keywords

    • activity detection
    • machine learning
    • radar sensing
    • wireless sensing

    Fingerprint

    Dive into the research topics of 'Radar Sensing for Activity Classification in Elderly People Exploiting Micro-Doppler Signatures using Machine Learning'. Together they form a unique fingerprint.

    Cite this