Abstract
Background. Two vaccines (Rotarix and RotaTeq) are highly effective at preventing severe rotavirus disease. Rotavirus vaccination has been introduced in the United Kingdom and other countries partly based on modeling and cost-effectiveness results. However, most of these models fail to account for the uncertainty about several vaccine characteristics and the mechanism of vaccine action. Methods. A deterministic dynamic transmission model of rotavirus vaccination in the United Kingdom was developed. This improves on previous models by 1) allowing for 2 different mechanisms of action for Rotarix and RotaTeq, 2) using clinical trial data to understand these mechanisms, and 3) accounting for uncertainty by using Markov Chain Monte Carlo. Results. In the long run, Rotarix and RotaTeq are predicted to reduce the overall rotavirus incidence by 50% (39%−63%) and 44% (30%−62%), respectively but with an increase in incidence in primary school children and adults up to 25 y of age. The vaccines are estimated to give more protection than 1 or 2 natural infections. The duration of protection is highly uncertain but has only impact on the predicted reduction in rotavirus burden for values lower than 10 y. The 2 vaccine mechanism structures fit equally well with the clinical trial data. Long-term postvaccination dynamics cannot be predicted reliably with the data available. Conclusion. Accounting for the joint uncertainty of several vaccine characteristics resulted in more insight into which of these are crucial for determining the impact of rotavirus vaccination. Data for up to at least 10 y postvaccination and covering older children and adults are crucial to address remaining questions on the impact of widespread rotavirus vaccination.
Original language | English |
---|---|
Pages (from-to) | 633-647 |
Journal | Medical Decision Making |
Volume | 35 |
Issue number | 5 |
DOIs | |
Publication status | Published - 26 Jan 2015 |
Bibliographical note
The full text is currently unavailable on the repositoryKeywords
- rotavirus
- vaccination
- uncertainty
- dynamic transmission model
- Markov Chain Monte Carlo