TY - JOUR
T1 - Quality-Aware Instantly Decodable Network Coding
AU - Liu, Ye
AU - Sung, Chi Wan
N1 - © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
PY - 2014/1/27
Y1 - 2014/1/27
N2 - In erasure broadcast channels, network coding has been demonstrated to be an efficient way to satisfy each user's demand. However, the erasure broadcast channel model does not fully characterize the information available in a "lost" packet, and therefore any retransmission schemes designed based on the erasure broadcast channel model cannot make use of that information. In this paper, we characterize the quality of erroneous packets by Signal-to-Noise Ratio (SNR) and then design a network coding retransmission scheme with the knowledge of the SNRs of the erroneous packets, so that a user can immediately decode two source packets upon reception of a useful retransmission packet. We demonstrate that our proposed scheme, namely Quality-Aware Instantly Decodable Network Coding (QAIDNC), can increase the transmission efficiency significantly compared to the existing Instantly Decodable Network Coding (IDNC) and Random Linear Network Coding (RLNC).
AB - In erasure broadcast channels, network coding has been demonstrated to be an efficient way to satisfy each user's demand. However, the erasure broadcast channel model does not fully characterize the information available in a "lost" packet, and therefore any retransmission schemes designed based on the erasure broadcast channel model cannot make use of that information. In this paper, we characterize the quality of erroneous packets by Signal-to-Noise Ratio (SNR) and then design a network coding retransmission scheme with the knowledge of the SNRs of the erroneous packets, so that a user can immediately decode two source packets upon reception of a useful retransmission packet. We demonstrate that our proposed scheme, namely Quality-Aware Instantly Decodable Network Coding (QAIDNC), can increase the transmission efficiency significantly compared to the existing Instantly Decodable Network Coding (IDNC) and Random Linear Network Coding (RLNC).
U2 - 10.1109/TWC.2014.012314.131046
DO - 10.1109/TWC.2014.012314.131046
M3 - Article
SN - 1536-1276
VL - 13
SP - 1604
EP - 1615
JO - IEEE Transactions on Wireless Communications
JF - IEEE Transactions on Wireless Communications
IS - 3
ER -