Abstract
Rising sea levels are causing more frequent flooding events in coastal areas and generate many issues for coastal communities such as loss of property or damages to infrastructures. To address this issue, this paper reviews measures currently in place and identifies possible control measures that can be implemented to aid preservation of coastlines in the future. Breakwaters present a unique opportunity to proactively address the impact of coastal flooding. However, there is currently a lack of research into combined hard and soft engineering techniques. To address the global need for developing sustainable solutions, three specific breakwater configurations were designed and experimentally compared in the hydraulic laboratory at Coventry University to assess their performance in reducing overtopping and the impact of waves, quantifying the effectiveness of each. The investigation confirmed that stepped configurations work effectively in high amplitudes waves, especially with the presence of a slope angle to aid wave reflection. These results provide a very valuable preliminary investigation into novel sustainable solutions incorporating both artificial and natural based strategies that could be considered by local and national authorities for the planning of future mitigation strategies to defend coastal areas from flooding and erosion.
Original language | English |
---|---|
Article number | 2471 |
Journal | Water |
Volume | 12 |
Issue number | 9 |
DOIs | |
Publication status | Published - 3 Sept 2020 |
Bibliographical note
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open accessarticle distributed under the terms and conditions of the Creative Commons Attribution(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Keywords
- Climate change
- Coastal flooding
- Coastal protection
- Experimental modelling
- Sea defence
- Sustainability
ASJC Scopus subject areas
- Biochemistry
- Geography, Planning and Development
- Aquatic Science
- Water Science and Technology