Probing the electronic structure of fine and large-grained SnO2 layers by spectroscopic ellipsometry and current-voltage measurements

Christos Petaroudis, Ioannis Kostis, Petros Panagis Filippatos, Alexander Chroneos, Anastasia Soultati, Maria Vasilopoulou, Dimitris Davazoglou

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Small- and large-grained undoped SnO2 films were deposited by atmospheric pressure chemical vapor deposition. The electronic structure of films was studied using spectroscopic ellipsometry measurements at temperatures up to 400 °C and at two thermal cycles, which were analyzed using the Tauc-Lorentz (T-L) and the Drude physical models. The parameters of the physical models have revealed information about details of the electronic structure of these films. It was found that the average energy of optical transitions En and the broadening C, related to the energy distance between valence and conduction band (VB and CB) and to the width of bands respectively, are the crucial parameters that influence the light absorption within the visible range. Small values of C and of the amplitude factor A which is related to the extent of the overlapping of wave-functions, observed for small-grained SnO2 samples, indicate the strong localization of wave-functions in the CB and high effective mass of electrons therein, which lead to a linear-quadratic shape of the I-V curves. Gap states, the extent of which was expressed by the difference between the Tauc and the T-L gaps, were found to act as electron donors similarly to oxygen vacancies. Heating in air caused the decrease of gap states and the oxidation of samples, which in turn caused shifts of the plasma frequency, ωp, whose magnitude and direction also depend on the effective mass of carriers, i.e., on the values of A and C.

Original languageEnglish
Article number139039
JournalThin Solid Films
Volume741
Early online date6 Dec 2021
DOIs
Publication statusPublished - 1 Jan 2022

Bibliographical note

Publisher Copyright:
© 2021 Elsevier B.V.

Keywords

  • APCVD
  • electronic structure
  • I-V measurements
  • SnO
  • Spectroscopic ellipsometry

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Probing the electronic structure of fine and large-grained SnO2 layers by spectroscopic ellipsometry and current-voltage measurements'. Together they form a unique fingerprint.

Cite this