Predictive Data Reduction in Wireless Sensor Networks Using Selective Filtering for Engine Monitoring

David James McCorrie, Elena Gaura, Keith Burnham, Nigel Poole, Roger Hazelden

    Research output: Chapter in Book/Report/Conference proceedingChapter

    11 Citations (Scopus)

    Abstract

    In a wireless sensor network, transmissions consume a large portion of a node’s energy budget. Data reduction is generally acknowledged as an effective means to reduce the number of network transmissions, thereby increasing the overall network lifetime. This paper builds on the Spanish Inquisition Protocol (SIP), to further reduce transmissions in a single-hop wireless sensor system aimed at a gas turbine engine exhaust gas temperature (EGT) monitoring application. A new method for Selective Filtering of sensed data based on state identification has been devised, using a skewed double exponentially weighted moving average filter for accurate state predictions. Low transmission rates are achieved even when significant temperature step changes occur. A simulator was implemented to generate flight temperature profiles similar to those encountered in real-life, which enabled tuning and evaluation of the algorithm. The results, summarised over 280 simulated flights of variable duration (from approximately 58 min to 14 h), show an average reduction in the number of transmissions by 95, 99.8, and 91% in the takeoff, cruise, and landing phases, respectively, compared to transmissions encountered by a sense-and-send system sampling at the same rate. The algorithm generates an average error of 0:11 0:04 °C over a 927 °C range. © Springer New York 2015.
    Original languageEnglish
    Title of host publicationWireless Sensor and Mobile Ad-Hoc Networks
    Subtitle of host publicationVehicular and Space Applications
    EditorsDriss Benhaddou, Ala Al-Fuqaha
    Place of PublicationNew York
    PublisherSpringer Verlag
    Pages129-148
    Number of pages20
    VolumeII
    ISBN (Electronic)978-1-4939-2468-4
    ISBN (Print)978-1-4939-2467-7
    DOIs
    Publication statusPublished - 2015

    Fingerprint Dive into the research topics of 'Predictive Data Reduction in Wireless Sensor Networks Using Selective Filtering for Engine Monitoring'. Together they form a unique fingerprint.

  • Cite this

    McCorrie, D. J., Gaura, E., Burnham, K., Poole, N., & Hazelden, R. (2015). Predictive Data Reduction in Wireless Sensor Networks Using Selective Filtering for Engine Monitoring. In D. Benhaddou, & A. Al-Fuqaha (Eds.), Wireless Sensor and Mobile Ad-Hoc Networks: Vehicular and Space Applications (Vol. II, pp. 129-148). New York: Springer Verlag. https://doi.org/10.1007/978-1-4939-2468-4_6