Abstract
Projecting a test point to a NURBS curve finds the closest point on the curve and point inversion finds the corresponding parameter for this test point. This paper presents an accurate and efficient method to solve both of these problems. We first subdivide the NURBS curves into a set of Bezier curves using knot insertion. For point projection, we extract candidate Bezier subcurves based on the relationship between the test point and the control polygon of the Bezier subcurve. For point inversion, we extract candidate Bezier subcurves based on the strong convex hull property, and then find the approximate candidate points and their corresponding parameter values. Finally, by comparing the distances between the test point and candidate points, we can find the closest point. We improve its accuracy by using the Newton-Raphson method.
Original language | English |
---|---|
Title of host publication | Proceedings of Theory and Practice of Computer Graphics |
Publisher | IEEE |
ISBN (Print) | 0-7695-1942-3 |
DOIs | |
Publication status | Published - 25 Jun 2003 |
Externally published | Yes |
Event | Theory and Practice of Computer Graphics 2003 - Birmingham, United Kingdom Duration: 3 Jun 2003 → 5 Jun 2003 |
Conference
Conference | Theory and Practice of Computer Graphics 2003 |
---|---|
Country/Territory | United Kingdom |
City | Birmingham |
Period | 3/06/03 → 5/06/03 |