Abstract
Artificial roughness applied to a Solar Air Heater (SAH) absorber plate is a popular technique for increasing its total thermal efficiency (ηt−th). In this paper, the influence of geometrical parameters of V-down ribs attached below the corrugated absorbing plate of a SAH on the ηt−th was examined. The impacts of key roughness parameters, including relative pitch p/e (6–12), relative height e/D (0.019–0.043), angles of attack α (30–75°), and Re (1000–20,000), were examined under real weather conditions. The SAH ηt−th roughened by V-down ribs was predicted using an in-house developed conjugate heat-transfer numerical model. The maximum SAH ηt−th was shown to be 78.8% as predicted under the steady-state conditions of Re = 20,000, solar irradiance G = 1000 W/m2, p/e = 8, e/D = 0.043, and α = 60. The result was 15.7% greater efficiency compared to the default smooth surface. Under real weather conditions, the ηt−th of the roughened SAH with single- and double-glass covers were 17.7 and 20.1%, respectively, which were higher than those of the smooth SAH.
Original language | English |
---|---|
Pages (from-to) | 555-569 |
Number of pages | 15 |
Journal | Clean Technologies |
Volume | 4 |
Issue number | 2 |
DOIs | |
Publication status | Published - 16 Jun 2022 |
Bibliographical note
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Keywords
- PV/T
- Solar energy
- Thermodynamic model
- Thermofluids
- Modeling and Simulation
- Heat Transfer
- Radiation
ASJC Scopus subject areas
- Environmental Engineering
- Energy Engineering and Power Technology
- Renewable Energy, Sustainability and the Environment