Partition Function Zeros of the Frustrated J1–J2 Ising Model on the Honeycomb Lattice

Denis Gessert, Martin Weigel, Wolfhard Janke

Research output: Contribution to journalArticlepeer-review

6 Downloads (Pure)

Abstract

We study the zeros of the partition function in the complex temperature plane (Fisher zeros) and in the complex external field plane (Lee–Yang zeros) of a frustrated Ising model with competing nearest-neighbor (J1>0) and next-nearest-neighbor (J2<0) interactions on the honeycomb lattice. We consider the finite-size scaling (FSS) of the leading Fisher and Lee–Yang zeros as determined from a cumulant method and compare it to a traditional scaling analysis based on the logarithmic derivative of the magnetization ∂ln⟨|M|⟩/∂β and the magnetic susceptibility χ. While for this model both FSS approaches are subject to strong corrections to scaling induced by the frustration, their behavior is rather different, in particular as the ratio R=J2/J1 is varied. As a consequence, an analysis of the scaling of partition function zeros turns out to be a useful complement to a more traditional FSS analysis. For the cumulant method, we also study the convergence as a function of cumulant order, providing suggestions for practical implementations. The scaling of the zeros convincingly shows that the system remains in the Ising universality class for R as low as −0.22, where results from traditional FSS using the same simulation data are less conclusive. Hence, the approach provides a valuable additional tool for mapping out the phase diagram of models afflicted by strong corrections to scaling.
Original languageEnglish
Article number919
Number of pages19
JournalEntropy
Volume26
Issue number11
Early online date29 Oct 2024
DOIs
Publication statusE-pub ahead of print - 29 Oct 2024

Bibliographical note

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Keywords

  • Ising model
  • frustration
  • partition function zeros
  • scaling laws
  • critical exponents

Fingerprint

Dive into the research topics of 'Partition Function Zeros of the Frustrated J1–J2 Ising Model on the Honeycomb Lattice'. Together they form a unique fingerprint.

Cite this