Abstract
This paper describes the development of a novel particle sensing system employing zinc oxide based solidly mounted resonator (SMR) devices for the detection of airborne fine particles (i.e., PM2.5 and PM10). The system operates in a dual configuration in which two SMR devices are driven by Colpitts-type oscillators in a differential mode. Particles are detected by the frequency shift caused by the mass of particles present on one resonator with while the other acts as a reference channel. Experimental validation of the system was performed inside an environmental chamber using a dust generator with the particles of known size and concentration. A sensor sensitivity of 4.6 Hz per μg/m3 was demonstrated for the SMRs resonating at a frequency of 970 MHz. Our results demonstrate that the SMR-based system has the potential to be implemented in CMOS technology as a low-cost, miniature smart particle detector for the real-time monitoring of airborne particles.
Original language | English |
---|---|
Pages (from-to) | 2282-2289 |
Number of pages | 8 |
Journal | IEEE Sensors Journal |
Volume | 16 |
Issue number | 8 |
DOIs | |
Publication status | Published - 15 Apr 2016 |
Bibliographical note
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.
Keywords
- Acoustic wave sensor
- air quality monitoring,
- Colpitts oscillator,
- particle sensor,
- particulate matter,
- solidly mounted resonator (SMR)