Abstract
ThO2 is a candidate material for use in nuclear fuel applications and as such it is important to investigate its materials properties over a range of temperatures and pressures. In the present study molecular dynamics calculations are used to calculate elastic and expansivity data. These are used in the framework of a thermodynamic model, the cBΩ model, to calculate the oxygen self-diffusion coefficient in ThO2 over a range of pressures (−10–10 GPa) and temperatures (300–1900 K). Increasing the hydrostatic pressure leads to a significant reduction in oxygen self-diffusion. Conversely, negative hydrostatic pressure significantly enhances oxygen self-diffusion.
Original language | English |
---|---|
Journal | Materials Research Express |
DOIs | |
Publication status | Published - 2016 |
Keywords
- ThO2
- oxygen self-diffusion