Optimal geometric motion planning for a spin-stabilized spacecraft

James Biggs, Nadjim Horri

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)


A method requiring low-computational overhead is presented which generates low-torque reference motions between arbitrary orientations for a spin-stabilized spacecraft. The initial stage solves a constrained optimal control problem deriving analytical solutions for a class of smooth and feasible reference motions. Specifically, for a quadratic cost function an application of Pontryagin’s maximum principle leads to a completely integrable Hamiltonian system that is, exactly solvable in closed-form, expressed in terms of several free parameters. This is shown to reduce the complexity of a practical motion planning problem from a constrained functional optimization problem to an unconstrained parameter optimization problem. The generated reference motions are then tracked using an augmented quaternion feedback law, consisting of the sum of a proportional plus derivative term and a term to compensate nonlinear dynamics. The method is illustrated with an application to re-point a spin-stabilized agile micro-spacecraft using zero propellant. The low computational overhead of the method enhances its suitability for on-board motion generation.
Original languageEnglish
Pages (from-to)609-616
Number of pages8
JournalSystems & Control Letters
Issue number4
Publication statusPublished - 2012


  • Nonholonomic motion planning
  • Parametric optimization
  • Pontryagin’s maximum principle
  • Attitude control
  • Tracking


Dive into the research topics of 'Optimal geometric motion planning for a spin-stabilized spacecraft'. Together they form a unique fingerprint.

Cite this