Research output per year
Research output per year
Emmanuel E. Luther, Seyed M. Shariatipour, Ran Holtzman, Michael C. Dallaston
Research output: Contribution to journal › Article › peer-review
Deep saline aquifers used for CO2 sequestration are commonly made of sedimentary formations consisting of several layers of distinguishable permeability. In this work, the effect of a non-monotonic, vertically varying permeability profile on the onset of convective instability is studied theoretically using linear stability analyses. The onset time depends on the interaction between the permeability profile and the location of the concentration perturbation peak beyond which the concentration of CO2 decays. A thin low-permeability layer can either accelerate or delay the onset time of the convective instability depending on the nature of the permeability variation – whether the permeability transition is smooth or layered, the Rayleigh number (Ra), and the location of the permeability change (a^) relative to the perturbation peak (a^c*), which scales as a^c*≈14Ra−1 for homogeneous systems. However, the low permeable layer has no effect on the onset time when it is near the lower boundary of a medium with sufficiently large Ra (a^c*≪a^). This nontrivial dependence highlights the implication of ignoring geological features of a small spatial extent, indicating the importance of a detailed characterization of CO2 storage sites.
Original language | English |
---|---|
Article number | 103490 |
Journal | International Journal of Greenhouse Gas Control |
Volume | 112 |
Early online date | 3 Nov 2021 |
DOIs | |
Publication status | Published - Dec 2021 |
Research output: Working paper/Preprint › Preprint