Online estimation of thermal parameters based on a reduced wide-temperature-range electro-thermal coupled model for lithium-ion batteries

Haijun Ruan, Jiuchun Jiang, Bingxiang Sun, Wenzhong Gao, Leyi Wang, Weige Zhang

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)

Abstract

To improve the accuracy of thermal model, optimize the design of heat dissipation system and evaluate online the thermal management system, an online estimation method of key thermal parameters is developed from carefully designed experiments, rather than being taken from the literature or the empirical value. The accurate prediction of heat generation, which is based on a reduced wide-temperature-range electro-thermal coupled model, is presented under easily obtainable alternating current excitation at different temperatures. To circumvent some inherent errors, a combined experimental/computational approach to simultaneously estimate the specific heat capacity and thermal resistance is proposed using quasi step power, with which the identification time is significantly reduced. The identified values of specific heat capacity and thermal resistance are validated with high accuracy. The adaptability validation is carried out under different temperatures and cooling conditions, as well as using different battery chemistries, indicating that the proposed method is generic. The in-situ methodology, thanks to good robustness on the colored noise, is capable of providing a promising candidate for accurate thermal modeling, on-board evaluation of battery thermal safety, and advanced design of thermal management system for electric vehicles.

Original languageEnglish
Pages (from-to)715-724
Number of pages10
JournalJournal of Power Sources
Volume396
Early online date10 Jul 2018
DOIs
Publication statusPublished - 31 Aug 2018
Externally publishedYes

Funder

This work is supported by the National Science Foundation of China (Grant No. 61633015 ).

Keywords

  • Lithium-ion battery
  • Thermal parameters estimation
  • Recursive instrument variable least square method
  • Sinusoidal alternating current
  • Electro-thermal coupled model

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Online estimation of thermal parameters based on a reduced wide-temperature-range electro-thermal coupled model for lithium-ion batteries'. Together they form a unique fingerprint.

Cite this