One-dimensional infinite-component vector spin glass with long-range interactions

F. Beyer, Martin Weigel, M. A. Moore

    Research output: Contribution to journalArticlepeer-review

    17 Citations (Scopus)


    We investigate zero and finite-temperature properties of the one-dimensional spin-glass model for vector spins in the limit of an infinite number m of spin components where the interactions decay with a power, σ, of the distance. A diluted version of this model is also studied, but found to deviate significantly from the fully connected model. At zero temperature, defect energies are determined from the difference in ground-state energies between systems with periodic and antiperiodic boundary conditions to determine the dependence of the defect-energy exponent θ on σ. A good fit to this dependence is θ=3/4−σ. This implies that the upper critical value of σ is 3/4, corresponding to the lower critical dimension in the d-dimensional short-range version of the model. For finite temperatures, the large m saddle-point equations are solved self-consistently, which gives access to the correlation function, the order parameter, and the spin-glass susceptibility. Special attention is paid to the different forms of finite-size scaling effects below and above the lower critical value, σ=5/8, which corresponds to the upper critical dimension 8 of the hypercubic short-range model.
    Original languageEnglish
    Article number014431
    JournalPhysical Review B
    Publication statusPublished - 26 Jul 2012

    Bibliographical note

    The full text is unavailable on the repository.


    Dive into the research topics of 'One-dimensional infinite-component vector spin glass with long-range interactions'. Together they form a unique fingerprint.

    Cite this