Abstract
Many Caribbean island nations have historically been heavily dependent on imported fossil fuels for both power and transportation, while at the same time being at an enhanced risk from the impacts of climate change, although their emissions represent a very tiny fraction of the global total responsible for climate change. Small island developing states (SIDSs) are among the leaders in advocating for the ambitious 1.5 °C Paris Agreement target and the transition to 100% sustainable, renewable energy systems. In this work, three central results are presented. First, through GIS mapping of all Caribbean islands, the potential for near-coastal deep-water as a resource for ocean thermal energy conversion (OTEC) is shown, and these results are coupled with an estimate of the countries for which OTEC would be most advantageous due to a lack of other dispatchable renewable power options. Secondly, hourly data have been utilized to explicitly show the trade-offs between battery storage needs and dispatchable renewable sources such as OTEC in 100% renewable electricity systems, both in technological and economic terms. Finally, the utility of near-shore, open-cycle OTEC with accompanying desalination is shown to enable a higher penetration of renewable energy and lead to lower system levelized costs than those of a conventional fossil fuel system.
Original language | English |
---|---|
Article number | 2192 |
Number of pages | 19 |
Journal | Energies |
Volume | 14 |
Issue number | 8 |
DOIs | |
Publication status | Published - 14 Apr 2021 |
Externally published | Yes |
Bibliographical note
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Keywords
- ocean thermal energy conversion
- OTEC
- seawater air conditioning
- SWAC
- desalination
- variable renewable energy
- wind power
- solar PV
- 100% renewable energy
- Caribbean