Abstract
Conformal field theory (CFT) predicts universal relations between scaling amplitudes and scaling dimensions for two-dimensional systems on infinite length cylinders, which hold true even independent of the model under consideration. We discuss different possible generalizations of such laws to three-dimensional geometries. Using a cluster update Monte Carlo algorithm we investigate the finite-size scaling (FSS) of the correlation lengths of several representatives of the class of three-dimensional classical O(n) spin models. We find that, choosing appropriate boundary conditions, the two-dimensional situation can be restored.
Original language | English |
---|---|
Pages (from-to) | 287–294 |
Journal | Physica A: Statistical Mechanics and its Applications |
Volume | 281 |
Issue number | 1-4 |
DOIs | |
Publication status | Published - 15 Jun 2000 |
Bibliographical note
The full text is not available on the repository.Keywords
- Spin models
- Finite-size scaling
- Universal amplitudes
- Conformal field theory