Abstract
The channel width-to-length ratio is an important transistor parameter for integrated circuit design. Contact diffusion into the channel during fabrication or operation alters the channel width and this important parameter. A novel methodology combining atomic force microscopy and scanning Kelvin probe microscopy (SKPM) with self-consistent modeling is developed for the nondestructive detection of contact diffusion on active devices. Scans of the surface potential are modeled using physically based Technology Computer Aided Design (TCAD) simulations when the transistor terminals are grounded and under biased conditions. The simulations also incorporate the tip geometry to investigate its effect on the measurements due to electrostatic tip–sample interactions. The method is particularly useful for semiconductor– and metal–semiconductor interfaces where the potential contrast resulting from dopant diffusion is below that usually detectable with scanning probe microscopy.
Original language | English |
---|---|
Pages (from-to) | 25631-25636 |
Number of pages | 6 |
Journal | ACS Applied Materials and Interfaces |
Volume | 8 |
Issue number | 38 |
DOIs | |
Publication status | Published - 1 Sept 2016 |
Bibliographical note
This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.ASJC Scopus subject areas
- General Engineering
- General Physics and Astronomy
- General Materials Science
Fingerprint
Dive into the research topics of 'Nondestructive Method for Mapping Metal Contact Diffusion in In2O3Thin-Film Transistors'. Together they form a unique fingerprint.Profiles
-
Petar Igic
- Centre for E-Mobility and Clean Growth - Professor in Power Semiconductor Applications
Person: Teaching and Research