Non-invasive quantification of peripheral arterial volume distensibility and its non-linear relationship with arterial pressure

Dingchang Zheng, Alan Murray

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)


Arterial wall function is associated with different physiological and clinical factors. Changes in arterial pressure cause major changes in the arterial wall. This study presents a simple non-invasive method to quantify arterial volume distensibility changes with different arterial pressures. The electrocardiogram, finger and ear photoplethysmogram were recorded from 15 subjects with the right arm at five different positions (90°, 45°, 0°, −45° and −90° referred to the horizontal level). Arm pulse propagation time was determined by subtracting ear pulse transit time from finger pulse transit time, and was used to obtain arterial volume distensibility. The mean arterial blood pressure with the arm at the horizontal level was acquired, and changes with position were calculated using the hydrostatic principle that blood pressure in the arm is linearly related to its vertical distance from the horizontal level. The mean arm pulse propagation times for the five different positions were 88, 72, 57, 54 and 52 ms, with the corresponding mean arterial volume distensibility of 0.234%, 0.158%, 0.099%, 0.088% and 0.083% per mmHg. For all consecutive changes in arm position, arm pulse propagation time and arterial volume distensibility, were significantly different (all probability P<0.05). The slopes of arm pulse propagation time and arterial volume distensibility against arterial pressure decreased significantly between each consecutive arm position from 90° to −45° (all P<0.01), indicating significant non-linearity. The experimental results fitted the physiological exponential model and Langewouters’ arctangent model well, and were also comparable to published data with arterial volume distensibility approximately tripling for transmural pressure changes from 101 to 58 mmHg. In conclusion, the inverse and non-linear relationship between arterial volume distensibility and arterial pressure has been quantified using a simple arm positioning procedure, with the greatest effect at low pressures. This work is an important step in developing a simple non-invasive technique for assessing peripheral arterial volume distensibility.
Original languageEnglish
Pages (from-to)1032-1037
Number of pages6
JournalJournal of Biomechanics
Issue number8
Early online date3 Apr 2009
Publication statusPublished - 29 May 2009
Externally publishedYes


  • Arterial volume distensibility
  • Photoplethysmography (PPG)
  • Arm pulse propagation time


Dive into the research topics of 'Non-invasive quantification of peripheral arterial volume distensibility and its non-linear relationship with arterial pressure'. Together they form a unique fingerprint.

Cite this