Non-fluorinated superhydrophobic Al7075 aerospace alloy by ps laser processing

R. Jagdheesh, P. Hauschwitz, J. Mužík, J. Brajer, D. Rostohar, P. Jiříček, J. Kopeček, T. Mocek

Research output: Contribution to journalArticlepeer-review

50 Citations (Scopus)


The metallic surfaces with low affinity or high repellence towards water molecules are extremely desirable. The present investigation reports the development of non-fluorinated super or ultrahydrophobic aerospace aluminum alloy (Al7075) surface by laser patterning and high vacuum process for 4 h. Lamellar and lotus leaf papillae like structures covered with nanoscale protrusions are found to be formed depends on the laser fluence and spatial shifts of laser scans. The fresh laser processed hydrophilic surface was vacuum processed to create layer of hydrocarbon to reduce the surface free energy for the wetting property transformation. The analysis of the results shows the synergistic effect of hierarchical structures and dominant presence of non-polar elements is critical for superhydrophobic property. The surface geometry is primarily responsible for the wetting property transformation by entrapping μ-volume of air to generate a composite interface of solid-gas-liquid. Micro and nanoscale (dual scale) surface structures are essential for the durable and consistent superhydrophobic property with high degree of water repellence for bigger volume of water droplets. Further, sole presence of nanoscale structures on inherent hydrophilic aluminum alloy surface with predominant presence of non-polar elements can yield only near superhydrophobic surface due to random spacing of nanoscale protrusions.

Original languageEnglish
Pages (from-to)287-293
Number of pages7
JournalApplied Surface Science
Early online date5 Jul 2019
Publication statusPublished - 1 Nov 2019
Externally publishedYes


This work was supported by European Structural and Investing Funds, Operational Programme Research, Development and Education (Grant agreement NO CZ.02.1.01/0.0/0.0/15_006/0000674) and from the European Union's Horizon 2020 research and innovation programme (Grant agreement NO 739573).


  • Ultrahydrophobic
  • Lotus effect
  • Rose petal effect
  • Nanostructures
  • Laser patterning
  • Non-fluorination
  • Nanostructure

ASJC Scopus subject areas

  • Chemistry(all)
  • Condensed Matter Physics
  • Physics and Astronomy(all)
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films


Dive into the research topics of 'Non-fluorinated superhydrophobic Al7075 aerospace alloy by ps laser processing'. Together they form a unique fingerprint.

Cite this