NMR studies of some η4-diene-rhodium(I) and main group metal derivatives of funtionally substituted cyclopentadienes

M. Arthurs, P. Gross, G. Kubal, Larysa Paniwnyk, E. Curzon

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

The carbon-13 NMR spectra of twenty four acyclic and cyclic η4-1,3-, 1,4- and 1,5-diene-rhodium(I) complexes of type η5-C5H4XRh (η4-diene), (X =H, Cl, Ph, CO2CH3 or CHO) are described. Each diene type can be easily distinguished from the values of its 103Rh13C coupling constants and olefincarbon coordination shifts. The effects of methyl substituents on the relative chemical shifts of the acyclic η4-1,3-diene carbon atom are broadly similar to that in analogous η4-dienetricarbonyliron systems, but the metalcarbon coupling constants imply a greater degree of retrodative bonding in the case of the rhodium complexes. The largest coordination shifts are found for the β olefin carbons of the 1,4-diene complexes. The unusual metalcarbon coupling in these complexes are a reflection of the strained conformation adopted on bonding to rhodium, and do not suggest conjugative interaction between the two alkene functions. The spectra of the 1,5-diene complexes show the expected trend resulting from a reduction in strain energy relative to that for the previous case. The spectra of the η5-cyclopentadienyl groups in these complexes as discussed in terms of a small contribution from either an η3-allyl-η2-ene or a η4-diolefin-η1-alkyl rotamer to the metalring bonding scheme; the rotamer type is governed by the cyclopentadienyl ring substituent and counter diene ligand. Several functionally-substituted cyclopentadienide salts have been examined by variable temperature hydrogen-1 and carbon-13 NMR spectroscopy. The fluxional behaviour of Tl1(C5H4NO2 and K(C5H4CHO) demonstrate how the Lewis acid character of the metal ion and the electron-accepting nature of the ring substituent control the structural preference for a form in which the substituent is either co-planar or orthogonal with respect to the cyclopentadienide group. Two dimensional 1H13C NMR spectra and simulation techniques peritted unambiguous assignment of ring nuclei. The chemical ionisation and fast atom bombardment mass spectra of several of the thallium(I) complexes reveal considerable association in the vapour state.
Original languageEnglish
Pages (from-to)223–243
JournalJournal of Organometallic Chemistry
Volume366
Issue number1-2
DOIs
Publication statusPublished - Apr 1989

Fingerprint

Cyclopentanes
Rhodium
dienes
rhodium
Carbon
Metals
Nuclear magnetic resonance
Derivatives
nuclear magnetic resonance
Alkenes
metals
Olefins
Alkadienes
carbon 13
Lewis Acids
Atoms
Thallium
Chemical shift
alkenes
Strain energy

Bibliographical note

The full text is currently unavailable on the repository.

Cite this

NMR studies of some η4-diene-rhodium(I) and main group metal derivatives of funtionally substituted cyclopentadienes. / Arthurs, M.; Gross, P.; Kubal, G.; Paniwnyk, Larysa; Curzon, E.

In: Journal of Organometallic Chemistry, Vol. 366, No. 1-2, 04.1989, p. 223–243.

Research output: Contribution to journalArticle

Arthurs, M. ; Gross, P. ; Kubal, G. ; Paniwnyk, Larysa ; Curzon, E. / NMR studies of some η4-diene-rhodium(I) and main group metal derivatives of funtionally substituted cyclopentadienes. In: Journal of Organometallic Chemistry. 1989 ; Vol. 366, No. 1-2. pp. 223–243.
@article{7bf6a0f2d7644e45a068ec2a58454c1b,
title = "NMR studies of some η4-diene-rhodium(I) and main group metal derivatives of funtionally substituted cyclopentadienes",
abstract = "The carbon-13 NMR spectra of twenty four acyclic and cyclic η4-1,3-, 1,4- and 1,5-diene-rhodium(I) complexes of type η5-C5H4XRh (η4-diene), (X =H, Cl, Ph, CO2CH3 or CHO) are described. Each diene type can be easily distinguished from the values of its 103Rh13C coupling constants and olefincarbon coordination shifts. The effects of methyl substituents on the relative chemical shifts of the acyclic η4-1,3-diene carbon atom are broadly similar to that in analogous η4-dienetricarbonyliron systems, but the metalcarbon coupling constants imply a greater degree of retrodative bonding in the case of the rhodium complexes. The largest coordination shifts are found for the β olefin carbons of the 1,4-diene complexes. The unusual metalcarbon coupling in these complexes are a reflection of the strained conformation adopted on bonding to rhodium, and do not suggest conjugative interaction between the two alkene functions. The spectra of the 1,5-diene complexes show the expected trend resulting from a reduction in strain energy relative to that for the previous case. The spectra of the η5-cyclopentadienyl groups in these complexes as discussed in terms of a small contribution from either an η3-allyl-η2-ene or a η4-diolefin-η1-alkyl rotamer to the metalring bonding scheme; the rotamer type is governed by the cyclopentadienyl ring substituent and counter diene ligand. Several functionally-substituted cyclopentadienide salts have been examined by variable temperature hydrogen-1 and carbon-13 NMR spectroscopy. The fluxional behaviour of Tl1(C5H4NO2 and K(C5H4CHO) demonstrate how the Lewis acid character of the metal ion and the electron-accepting nature of the ring substituent control the structural preference for a form in which the substituent is either co-planar or orthogonal with respect to the cyclopentadienide group. Two dimensional 1H13C NMR spectra and simulation techniques peritted unambiguous assignment of ring nuclei. The chemical ionisation and fast atom bombardment mass spectra of several of the thallium(I) complexes reveal considerable association in the vapour state.",
author = "M. Arthurs and P. Gross and G. Kubal and Larysa Paniwnyk and E. Curzon",
note = "The full text is currently unavailable on the repository.",
year = "1989",
month = "4",
doi = "10.1016/0022-328X(89)87329-2",
language = "English",
volume = "366",
pages = "223–243",
journal = "Journal of Organometallic Chemistry",
issn = "0022-328X",
publisher = "Elsevier",
number = "1-2",

}

TY - JOUR

T1 - NMR studies of some η4-diene-rhodium(I) and main group metal derivatives of funtionally substituted cyclopentadienes

AU - Arthurs, M.

AU - Gross, P.

AU - Kubal, G.

AU - Paniwnyk, Larysa

AU - Curzon, E.

N1 - The full text is currently unavailable on the repository.

PY - 1989/4

Y1 - 1989/4

N2 - The carbon-13 NMR spectra of twenty four acyclic and cyclic η4-1,3-, 1,4- and 1,5-diene-rhodium(I) complexes of type η5-C5H4XRh (η4-diene), (X =H, Cl, Ph, CO2CH3 or CHO) are described. Each diene type can be easily distinguished from the values of its 103Rh13C coupling constants and olefincarbon coordination shifts. The effects of methyl substituents on the relative chemical shifts of the acyclic η4-1,3-diene carbon atom are broadly similar to that in analogous η4-dienetricarbonyliron systems, but the metalcarbon coupling constants imply a greater degree of retrodative bonding in the case of the rhodium complexes. The largest coordination shifts are found for the β olefin carbons of the 1,4-diene complexes. The unusual metalcarbon coupling in these complexes are a reflection of the strained conformation adopted on bonding to rhodium, and do not suggest conjugative interaction between the two alkene functions. The spectra of the 1,5-diene complexes show the expected trend resulting from a reduction in strain energy relative to that for the previous case. The spectra of the η5-cyclopentadienyl groups in these complexes as discussed in terms of a small contribution from either an η3-allyl-η2-ene or a η4-diolefin-η1-alkyl rotamer to the metalring bonding scheme; the rotamer type is governed by the cyclopentadienyl ring substituent and counter diene ligand. Several functionally-substituted cyclopentadienide salts have been examined by variable temperature hydrogen-1 and carbon-13 NMR spectroscopy. The fluxional behaviour of Tl1(C5H4NO2 and K(C5H4CHO) demonstrate how the Lewis acid character of the metal ion and the electron-accepting nature of the ring substituent control the structural preference for a form in which the substituent is either co-planar or orthogonal with respect to the cyclopentadienide group. Two dimensional 1H13C NMR spectra and simulation techniques peritted unambiguous assignment of ring nuclei. The chemical ionisation and fast atom bombardment mass spectra of several of the thallium(I) complexes reveal considerable association in the vapour state.

AB - The carbon-13 NMR spectra of twenty four acyclic and cyclic η4-1,3-, 1,4- and 1,5-diene-rhodium(I) complexes of type η5-C5H4XRh (η4-diene), (X =H, Cl, Ph, CO2CH3 or CHO) are described. Each diene type can be easily distinguished from the values of its 103Rh13C coupling constants and olefincarbon coordination shifts. The effects of methyl substituents on the relative chemical shifts of the acyclic η4-1,3-diene carbon atom are broadly similar to that in analogous η4-dienetricarbonyliron systems, but the metalcarbon coupling constants imply a greater degree of retrodative bonding in the case of the rhodium complexes. The largest coordination shifts are found for the β olefin carbons of the 1,4-diene complexes. The unusual metalcarbon coupling in these complexes are a reflection of the strained conformation adopted on bonding to rhodium, and do not suggest conjugative interaction between the two alkene functions. The spectra of the 1,5-diene complexes show the expected trend resulting from a reduction in strain energy relative to that for the previous case. The spectra of the η5-cyclopentadienyl groups in these complexes as discussed in terms of a small contribution from either an η3-allyl-η2-ene or a η4-diolefin-η1-alkyl rotamer to the metalring bonding scheme; the rotamer type is governed by the cyclopentadienyl ring substituent and counter diene ligand. Several functionally-substituted cyclopentadienide salts have been examined by variable temperature hydrogen-1 and carbon-13 NMR spectroscopy. The fluxional behaviour of Tl1(C5H4NO2 and K(C5H4CHO) demonstrate how the Lewis acid character of the metal ion and the electron-accepting nature of the ring substituent control the structural preference for a form in which the substituent is either co-planar or orthogonal with respect to the cyclopentadienide group. Two dimensional 1H13C NMR spectra and simulation techniques peritted unambiguous assignment of ring nuclei. The chemical ionisation and fast atom bombardment mass spectra of several of the thallium(I) complexes reveal considerable association in the vapour state.

U2 - 10.1016/0022-328X(89)87329-2

DO - 10.1016/0022-328X(89)87329-2

M3 - Article

VL - 366

SP - 223

EP - 243

JO - Journal of Organometallic Chemistry

JF - Journal of Organometallic Chemistry

SN - 0022-328X

IS - 1-2

ER -