Abstract
This paper describes a computationally efficient method to determine optimal locations of sensor/actuator (s/a) pairs for active vibration reduction of a flexible structure. Previous studies have tackled this problem using heuristic optimization techniques achieved with numerous combinations of s/a locations and converging on a suboptimal or optimal solution after multithousands of generations. This is computationally expensive and directly proportional to the number of sensors, actuators, possible locations on structures, and the number of modes required to be suppressed (control variables). The current work takes a simplified approach of modeling a structure with sensors at all locations, subjecting it to external excitation force or structure base excitation in various modes of interest and noting the locations of n sensors giving the largest average percentage sensor effectiveness. The percentage sensor effectiveness is measured by dividing all sensor output voltage over the maximum for each mode using time and frequency domain analysis. The methodology was implemented for dynamically symmetric and asymmetric structures under external force and structure base excitations to find the optimal distribution based on time and frequency responses analysis. It was found that the optimized sensor locations agreed well with the published results for a cantilever plate, while with very much reduced computational effort and higher effectiveness. Furthermore, it was found that collocated s/a pairs placed in these locations offered very effective active vibration reduction for the structure considered.
Original language | English |
---|---|
Article number | 011015 |
Number of pages | 13 |
Journal | Journal of Vibration and Acoustics Transaction on ASME |
Volume | 140 |
Issue number | 1 |
DOIs | |
Publication status | Published - 29 Sept 2017 |
Keywords
- Sensors
- Actuators
- Vibration
- Excitation
ASJC Scopus subject areas
- Mechanical Engineering
- Aerospace Engineering
- Automotive Engineering
- Control and Systems Engineering
- Civil and Structural Engineering
Fingerprint
Dive into the research topics of 'New methodology for optimal placement of piezoelectric sensor/actuator pairs for active vibration control of flexible structures'. Together they form a unique fingerprint.Profiles
-
Ali Hossain Alewai Daraji
- School of Mechanical Engineering - Assistant Professor (Academic)
Person: Teaching and Research